Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14089-14095    https://doi.org/10.11896/cldb.19120052
  金属与金属基复合材料 |
切削深度对单晶γ-TiAl合金亚表面缺陷及残余应力的影响
王麒1,2, 冯瑞成1,2,*, 樊礼赫1,2, 邵自豪1,2, 董建勇1,2
1 兰州理工大学机电工程学院,兰州 730050
2 兰州理工大学数字制造技术与应用省部共建教育部重点实验室,兰州 730050
Effect of Cutting Depth on Subsurface Defects and Residual Stress in Single Crystal γ-TiAl Alloy
WANG Qi1,2, FENG Ruicheng1,2,*, FAN Lihe1,2, SHAO Zihao1,2, DONG Jianyong1,2
1 School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Key Laboratory of Digital Manufacturing Technology and Application, Ministry of Education Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 5329KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用分子动力学方法模拟了单晶γ-TiAl合金在不同切削深度下的切削过程,分析了不同切削深度下微观缺陷演化及稳定切削后的内应力演变,研究了切削后残余应力和von Mises应力等在不同切削深度下的分布规律,讨论了不同切削深度下位错和层错等微观缺陷演化及内应力演变之间的关系。结果表明:位错反应及层错演化随着切削深度的增加越来越剧烈,位错反应对Lomer-Cottrell位错的形成影响较大;刀具挤压工件表面形成的残余压应力受层错演化及位错反应的影响,位错反应的剧烈程度影响内应力的大小,且残余压应力存在于亚表面下的一定深度内;同时发现切削深度的变化对von Mises应力的影响较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王麒
冯瑞成
樊礼赫
邵自豪
董建勇
关键词:  单晶γ-TiAl合金  纳米切削  残余应力  位错反应  堆垛层错    
Abstract: In this paper, the molecular dynamics method was used to simulate the cutting process of single crystal γ-TiAl alloy under different cutting depths. The evolution of microscopic defects and the evolution of internal stress after stable cutting at different depths of cutting was analyzed, and the distribution of residual stress and von Mises stress at different cutting depths were studied, the relationship between the evolution of microscopic defects and internal stress at different cutting depths was discussed. The results show that the dislocation reaction and the stacking fault evolution increase with the increase of cutting depth, and the dislocation reaction has a great influence on the formation of the Lomer-Cottrell dislocation. The residual compressive stress formed by the surface of the tool extrusion workpiece is affected by the stacking fault evolution and dislocation reaction, and the severity of the dislocation reaction affects the internal stress. The residual compressive stress exists on a certain depth of the subsurface. It is also found that the change of cutting depth had little effect on von Mises stress.
Key words:  single crystal γ-TiAl alloy    nano-cutting    residual stress    dislocation reaction    stacking fault
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TG501.1  
  TG146.23  
基金资助: 国家自然科学基金(52065036);长江学者和创新团队发展计划(IRT_15R30);兰州理工大学红柳一流学科建设项目
通讯作者:  * postfeng@lut.edu.cn   
作者简介:  王麒,兰州理工大学机电工程学院硕士研究生,主要从事切削加工表面完整性及评价方法的研究。
冯瑞成,工学博士,教授。现在兰州理工大学机电工程学院工作,主要从事切削加工表面完整性及评价方法和机械强度理论等方面的研究。
引用本文:    
王麒, 冯瑞成, 樊礼赫, 邵自豪, 董建勇. 切削深度对单晶γ-TiAl合金亚表面缺陷及残余应力的影响[J]. 材料导报, 2021, 35(14): 14089-14095.
WANG Qi, FENG Ruicheng, FAN Lihe, SHAO Zihao, DONG Jianyong. Effect of Cutting Depth on Subsurface Defects and Residual Stress in Single Crystal γ-TiAl Alloy. Materials Reports, 2021, 35(14): 14089-14095.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120052  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14089
1 Yao C F, Lin J N, Wu D X, et al. Chinese Journal of Aeronautics, 2018, 31(4), 826.
2 Liu B, Xu Z, Chen C, et al. Computational Materials Science, 2019, 163, 127.
3 Fang F Z, Wu H, Zhou W, et al. Journal of Materials Processing Technology, 2007, 184(1-3), 407.
4 Sharma A, Datta D, Balasubramaniam R. Computational Materials Science, 2018, 153, 241.
5 Zhang L, Zhao H W, Dai L, et al. RSC Advances, 2015, 5(17), 12678.
6 Han X L, Liu P, Sun D L, et al. Tribology International, 2019, 137, 340.
7 Wang Q L, Bai Q S, Chen J X, et al. Applied Surface Science, 2015, 344, 38.
8 Wang J S, Zhang X D, Fang F Z, et al. Applied Surface Science, 2018, 455, 608.
9 Feng R C, Qiao H Y, Zhu Z X, et al. Rare Metal Materials & Enginee-ring, 2019, 48(5), 1559(in Chinese).
冯瑞成, 乔海洋, 朱宗孝, 等. 稀有金属材料与工程, 2019, 48(5), 1559.
10 Dai H F, Chen G Y, Zhou C, et al. Applied Surface Science, 2017, 393, 405.
11 Mylvaganam K, Zhang L. Computational Materials Science, 2014, 81(2), 10.
12 Wang Y C, Shi J, Ji C H. Applied Physics A, 2014, 115(4), 1263.
13 Wang M H, You S Y, Wang F N, et al. Applied Physics, 2019, 125(3), 176.
14 Song H Y, Zha X W. Rare Metal Materials & Engineering, 2008, 37(7), 1217(in Chinese).
宋海洋, 查新未. 稀有金属材料与工程, 2008, 37(7), 1217.
15 Zhang L, Zhao H W, Yang Y H, et al. Applied Physics A, 2014, 116(1), 141.
16 Gu H Q. Study of crystal aluminum nona cutting mechanism based on molecular dynamics. Master's Thesis, Kunming University of Science and Technology, China, 2015 (in Chinese).
谷汉卿. 基于分子动力学单晶铝纳米切削机理研究. 硕士学位论文, 昆明理工大学, 2015.
17 Qi S H. The molecular dynamics study of metallic titanium nanofabrication. Master's Thesis, Shenyang Aerospace University, China, 2013 (in Chinese).
齐顺河. 金属钛纳米加工的分子动力学研究. 硕士学位论文, 沈阳航空航天大学, 2013.
18 Zhu Y, Zhang Y C, Qi S H, et al. Rare Metal Materials & Engineering, 2016, 45(4), 897.
19 Dandekar C R, Shin Y C. Composites: Part A, 2011, 42(4), 355.
20 Uezaki K, Shimizu J, Zhou L. Precision Engineering, 2014, 38(2), 371.
21 Tao H J, Sun S P, Zhang C C, et al. The Chinese Journal of Nonferrous Metals, 2014(11), 2789(in Chinese).
陶辉锦, 孙顺平, 张铖铖, 等. 中国有色金属学报, 2014(11), 2789.
22 Gong Y D, Zhu Z X, Zhou Y G, et al. Science China (Technological Sciences), 2016, 59(12), 1837.
23 Graham L W Cross. Nature Nanotechnology, 2011, 6(8), 467.
[1] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[2] 初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
[3] 刘明霞, 王冬, 张文康, 畅庚榕, 刘道新, 徐可为. 喷丸强化对17-4PH不锈钢室温及高温疲劳性能的影响[J]. 材料导报, 2020, 34(22): 22124-22129.
[4] 乔及森, 芮正雷, 王磊, 陈振文. 基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究[J]. 材料导报, 2020, 34(22): 22142-22147.
[5] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[6] 权国政, 施瑞菊, 刘乔, 赵江, 周杰, 王月乔. 电弧熔丝单层单道积材残余应力模拟分析及锤击消除研究[J]. 材料导报, 2020, 34(14): 14154-14160.
[7] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[8] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[9] 王子云, 赵鹏越, 郭永博, 张凯, 王康. 梯度纳米多晶铜纳米切削过程的分子动力学仿真[J]. 材料导报, 2019, 33(Z2): 419-423.
[10] 郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟. 减摩耐磨多层膜设计及研究进展[J]. 材料导报, 2019, 33(3): 444-453.
[11] 乔巍, 姚卫星, 马铭泽. 复合材料残余应力和固化变形数值模拟及本构模型评价[J]. 材料导报, 2019, 33(24): 4193-4198.
[12] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[13] 韩志勇, 丘珍珍, 史文新. 强流脉冲电子束粘结层表面改性对热障涂层热震及残余应力的影响[J]. 材料导报, 2018, 32(24): 4303-4308.
[14] 丁军, 汪建, 黄霞, 王路生, 赵昊男, 宋鹍. 含孔洞缺陷的单晶α-Ti单轴拉伸下的微观变形机理及力学性能[J]. 材料导报, 2018, 32(18): 3171-3180.
[15] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed