Fatigue Life Extension Technologies for Weld Joints of Metals: a Review
SUN Pengfei1, YAO Dandan2, ZHANG Penglin3, WANG Dongqiqiong1, HOU Jiapeng1, WANG Qiang1,*, ZHANG Zhefeng1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130062, China 3 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
Abstract: Fatigue fracture is the main failure mode of metal components in long-term service under cyclic or alternating load. Welding is an important metal connection method. The weld joint is the site of the same metal or different metal connected with each other, and the chemical composition, microstructure, and mechanical properties in the weld joint change gradually. As the service environment of metal components becomes more and more severe, the fatigue of welded joints becomes more and more prominent when they are in long-term service under cyclic or alternating load. Therefore, how to improve the fatigue life of metal components with welded joints has become an important scientific issue. Due to the complexity of metal welding process, the fatigue lives of metal components with welded joints are affected by many factors. Firstly, the key factors affecting the fatigue life of weld joint are summarized, including the microstructure evolution, welding defects, stress concentration, residual stress and so on. Attributed to microstructure evolution, geometric structure changes, and the introduction of welding defects, the fatigue properties of welded joints are usually decreased markedly as compared with that of the matrix. Subsequently, a variety of weld fatigue life extension technologies are summed up, such as weld grinding technology, hammering technology, TIG dressing technology, high frequency mechanical impact technology, low transformation temperature filler materials technology, and so on. According to the characteristics of the weld fatigue life extension technology, it can be roughly divided into three categories: weld shape modification method, weld residual stress method, and low phase change temperature material method.
1 Wang D P, Gong B M, Wu S P, et al. Journal of East China Jiaotong University,2016,33(6),1(in Chinese). 王东坡,龚宝明,吴世品,等.华东交通大学学报,2016,33(6),1. 2 Halid Can Yıldırım. International Journal of Fatigue,2017,101,408. 3 Shang X, Marques E A S, Machado J J M, et al. Composites Part B: Engineering,2019,177,107363. 4 Yu Weiwei, Fan Minyu, Jia Wenqing, et al. International Journal of Fatigue,2019,126,143. 5 Wang M S, Li D L, Zhang E L. Hot Working Technology,2018,47(2),57(in Chinese). 王猛松,李大磊,张二亮.热加工工艺,2018,47(2),57. 6 Chen J W. Hot Working Technology,2016,45(17),201(in Chinese). 陈建武.热加工工艺,2016,45(17),201. 7 Xiong C G, He J, Chen S S. Welding Technology,2018,47(10),70(in Chinese). 熊从贵,何静,陈送送.焊接技术,2018,47(10),70. 8 Meng Q G, Yuan Z T, Yin X H. Heat Treatment,2014,29(2),54(in Chinese). 孟庆国,袁中涛,尹孝辉.热处理,2014,29(2),54. 9 Dong X C, Zhang X, Chen Y Q, et al. Materials for Mechanical Engineering,2011,35(5),31(in Chinese). 董现春,张熹,陈延清,等.机械工程材料,2011,35(5),31. 10 Lu K Y, Yang J Y, Dong J J, et al. Welding Technology,2016,45(6),74(in Chinese). 鲁克莹,杨津瑜,董俊军,等.焊接技术,2016,45(6),74. 11 Han Z X, Li C, Liu G Q, et al. Welding Technology,2019,48(8),54(in Chinese). 韩振仙,李超,柳国强,等.焊接技术,2019,48(8),54. 12 Cao K, Deng X G, Lv P Z, et al. Hot Working Technology,2019,48(1),193(in Chinese). 曹凯,邓先刚,吕品正,等.热加工工艺,2019,48(1),193. 13 Zhang Y Y, Gou G Q, Xiong J K,et al. Welding Technology,2019,48(7),6(in Chinese). 章友谊,苟国庆,熊建坤,等.焊接技术,2019,48(7),6. 14 Xue H F, Xia N, Jin W T, et al. Welding Technology,2019,48(5),77(in Chinese). 薛海峰,夏宁,金文涛,等.焊接技术,2019,48(5),77. 15 Zhang S X, Wang R, Xie X, et al. Hot Working Technology,2018,47(19),85(in Chinese). 张世欣,汪认,谢旭,等.热加工工艺,2018,47(19),85. 16 He B L, Ye B, Deng H P, et al. Transactions of the China Welding Institution,2019,40(2),31(in Chinese). 何柏林,叶斌,邓海鹏,等.焊接学报,2019,40(2),31. 17 Sun J, Ni B C, He B L. Welding Technology,2017,46(8),29(in Chinese). 孙佳,倪宝成,何柏林.焊接技术,2017,46(8),29. 18 Jin H, He B L. Ordnance Material Science and Engineering,2018,41(3),95(in Chinese). 金辉,何柏林.兵器材料科学与工程,2018,41(3),95. 19 Yan Z J, Liu X S, Fang H Y, et al. Transactions of the China Welding Institution,2013,34(4),105(in Chinese). 闫忠杰,刘雪松,方洪渊,等.焊接学报,2013,34(4),105. 20 Xie R J, Chen F R, Tang D F, et al. Transactions of the China Welding Institution,2017,38(6),56(in Chinese). 解瑞军,陈芙蓉,唐大富,等.焊接学报,2017,38(6),56. 21 Wang D S, Chen D G, Tan B, et al. Ordnance Material Science and Engineering,2009,32(5),69(in Chinese). 王冬生,陈东高,谭兵,等.兵器材料科学与工程,2009,32(5),69. 22 He B L, Jiang M M, Yu Y X, et al. Journal of Materials Engineering,2018,46(10),70(in Chinese). 何柏林,江明明,于影霞,等.材料工程,2018,46(10),70. 23 Ding J H, He B L. Ordnance Material Science and Engineering,2018,41(4),92(in Chinese). 丁江灏,何柏林.兵器材料科学与工程,2018,41(4),92. 24 Chen C Y. Fatigue and fracture, Huazhong University of Science and Technology Press, China,2011(in Chinese). 陈传尧.疲劳与断裂,华中科技大学出版社,2001. 25 Wang D P, Huo L X, Zhang Y F, et al.The Chinese Journal of Nonferrous Metals,2001(5),754(in Chinese). 王东坡,霍立兴,张玉凤,等.中国有色金属学报,2001(5),754. 26 Leitner M, Ottersböck M, Pußwald M. Engineering Structures,2018,163,215. 27 Wu L Q, Chen Q, Wang L.Electric Welding Machine,2018,48(5),40(in Chinese). 吴连强,陈强,王磊.电焊机,2018,48(5),40. 28 Zbigniew Mikulski, Tom Lassen.International Journal of Fatigue,2019,120,303. 29 John H L P, Hsin J H, Kin S T, et al. International Journal of Fatigue,2017,94,158. 30 He B L, Zhang Z S, Xie X T, et al. China Railway Science,2017,38(5),107(in Chinese). 何柏林,张枝森,谢学涛,等.中国铁道科学,2017,38(5),107. 31 Shi Q C. Electric Welding Machine,2011,41(8),29(in Chinese). 时群超.电焊机,2011,41(8),29. 32 Hajime Yamamoto, Yoshikazu Danno, Kazuhiro Ito, et al.Materials & Design,2018,160,1019. 33 Xia P X, Dong Y H, Dong Z T. Welding & Joining,1991(12),2(in Chinese). 夏丕旭,董亚辉,董增田.焊接,1991(12),2. 34 Liu J, Gou W X, Liu W, et al. Materials & Design,2009,30(6),1944. 35 Yamada K, Kakiichi T, Ishikawa T. Extending fatigue life of cracked welded joint by impact crack closure retrofit treatment. International Institute of Welding,2009. 36 Fabien Lefebvre, Catherine Peyrac, Guillaume Elbel, et al. Procedia Engineering,2015,133,454. 37 Jan Roman Hönnige, Paul Colegrove, Stewart Williams.Procedia Engineering,2017,216,8. 38 Dahle T. International Journal of Fatigue,1998,20(9),677. 39 Lopez Martinez L, Lin Peng R, Blom A F, et al. European Structural Integrity Society,1999,23,117. 40 van Es S H J, Kolstein M H, Pijpers R J M, et al. Procedia Engineering,2013,66,126. 41 Halid Can Yıldırım. International Journal of Fatigue,2015,79,36. 42 Gurney T R. Fatigue of welded structres, Cambridge University Press,1979. 43 Pijpers R J M. Fatigue strength of welded connections made of very high strength cast and rolled steels. Ph.D. Thesis, Delft University of technology, Netherlands,2011. 44 van Es S H J. Effect of TIG-dressing on fatigue strength and weld toe geometry of butt welded connections in high strength steel. Master's Thesis, Delft University of Technology, Netherlands,2012. 45 Pedersen M M, Mouritsen O Ø, Hansen M R, et al. Comparison of post weld treatment of high strength steel welded joints in medium cycle fatigue. International Institute of Welding,2009. 46 Skriko T, Ghafouri M, Björk T. International Journal of Fatigue,2017,94,110. 47 Bertil Jonsson, Yang Shin, Thomas Däuwel, et al. Procedia Engineering,2013,66,202. 48 Halid Can Yıldırım, Gary B. Marquis. Materials & Design,2014,58,543. 49 Halid Can Yıldırım, Martin Leitner, Gary B. Marquis, et al. Engineering Structures,2016,106,422. 50 Halid C Y, Gary B M. International Journal of Fatigue,2012,44,168. 51 Jörn Berg, Natalie Stranghöner. International Journal of Fatigue,2016,82,35. 52 Leitner M, Khurshid M, Barsoum Z. Engineering Structures,2017,143,589. 53 Ebrahim Harati, Lars-Erik Svensson, Leif Karlsson, et al. Procedia Structural Integrity,2016,2,3483. 54 Zhao X H, Wang D P, Wang X B, et al. Transactions of the China Wel-ding Institution,2010,31(11),57(in Chinese). 赵小辉,王东坡,王惜宝,等.焊接学报,2010,31(11),57. 55 Yao P, Zhang Z Y, Wu X Y, et al. Ordnance Material Science and Engineering,2014,37(5),94(in Chinese). 姚鹏,张志毅,吴向阳,等.兵器材料科学与工程,2014,37(5),94. 56 Hu G X, Cai X. Fundamentals of Material Science, Shanghai Jiaotong University Press, China,2010(in Chinese). 胡赓祥,蔡珣.材料科学基础,上海交通大学出版社,2010. 57 Jie R J, Qiu X M, Chen F R, et al. Transactions of the China Welding Institution,2014,35(12),35(in Chinese). 解瑞军,邱小明,陈芙蓉,等.焊接学报,2014,35(12),35. 58 Zhu Y L, Li Z M, Han Z X, et al. Rare Metal Materials and Enginee-ring,2010,39(S1),130(in Chinese). 朱有利,李占明,韩志鑫,等.稀有金属材料与工程,2010,39(S1),130. 59 Magnier A, Scholtes B, Niendorf T. Polymer Testing,2018,71,329. 60 Muránsky O, Hosseinzadeh F, Hamelin C J, et al. International Journal of Pressure Vessels and Piping,2018,164,55. 61 Stone H J, Withers P J, Roberts S M, et al. Metallurgical and Materials Transactions A,1999,30(7),1797. 62 Yang Xinjun, Ling Xiang, Zhou Jianxin. International Journal of Fatigue,2014,61,28. 63 Liu Yang, Wang Dongpo, Deng Caiyan, et al. International Journal of Fatigue,2014,66,155. 64 Hitoshi Soyama. Journal of Materials Processing Technology,2019,269,65. 65 Gill A, Telang A, Mannava S R, et al. Materials Science and Engineering A,2013,576,346. 66 Zeng X Y, Wu Y P. Surface engineering, Mechanical Industry Press, China,2003(in Chinese). 曾晓雁,吴懿平.表面工程学,机械工业出版社,2003. 67 Wei S, Wang Z, Yang Y, et al. Hot Working Technology,2020,49(9),122(in Chinese). 魏顺,汪舟,杨莹,等.热加工工艺,2020,49(9),122. 68 Wang Cheng, Wang Long, Wang Xiaogui, et al.International Journal of Mechanical Sciences,2018,146,280. 69 Torres M, Voorwald H. International Journal of Fatigue,2002,24(8),877. 70 Shiozawa K, Lu L. Fatigue & Fracture of Engineering Materials & Structures,2002,25,813. 71 Zhuang W Z, Halford G R. International Journal of Fatigue,2001,23,31. 72 Sara Bagherifard, Ramin Ghelichi, Mario Guagliano. Applied Surface Science,2012,258(18),6831. 73 Enomoto K, Hirano K, Mochizuki M, et al. Journal of the Society of Materials Science,1996,45(7),734. 74 Hitoshi Soyama, Fumio Takeo. Journal of Materials Processing Technology,2016,227,80. 75 Rajesh N, Ramesh B N. Materials and Manufacturing Processes,2006,21(4),399. 76 Rajesh N, Veeraraghavan S, Ramesh Babu N. International Journal of Machine Tools and Manufacture,2004,44,855. 77 Jiang W, Luo Y, Wang H, et al. Journal of Pressure Vessel Technology,2015,137(3),1. 78 Colosimo B M, Monno M. In: Kuljanic E(eds). AMST '99. International Centre for Mechanical Sciences (Courses and Lectures). Vienna,1999,pp. 406. 79 Balamurugan K, Uthayakumar M, Gowthaman S, et al. Engineering Fai-lure Analysis,2018,92,268. 80 Yamaguti A, Shimizu S. Journal of Fluids Engineering,1987,109(4),442. 81 Soyama H, Yanauchi Y, Sato K, et al. Experimental Thermal and Fluid Science,1996,12(4),411. 82 Foldyna J, Sitek L, Svehla B, et al. Ultrasonics Sonochemistry,2004,11(3),131. 83 OOI K K. Journal of Fluid Mechanics,1985,151,367. 84 Gopalan G, Katz J, Knio O. Journal of Fluid Mechanics,1999,398,1. 85 Hitoshi Soyama.Materials Sciences and Applications,2014,5,430. 86 Masataka Ijiri, Daichi Shimonishi, Daisuke Nakagawa, et al. Internatio-nal Journal of Lightweight Materials and Manufacture,2018,1,246. 87 Hatamleh O, Lyons J, Forman R. International Journal of Fatigue,2007,29,34. 88 Hatamleh O. Materials Science and Engineering A,2008,492,76. 89 Hatamleh O, De Wald A. Journal of Materials Processing Technology,2009,209,9. 90 Zhang L, Luo K Y, Lu J Z, et al. Materials Science and Engineering A,2011,528,7. 91 Iordachescu M, Valiente A, Caballero L, et al. Surface and Coatings Technology,2012,206,9. 92 Chen X, Wang J, Fang Y, et al. Opt Laser Technology,2014,57,64. 93 Sano Y, Masaki K, Gushi T, et al. Materials & Design,2012,36,14. 94 Tomokazu Sano, Takayuki Eimura, Ryota Kashiwabara, et al. Journal of Laser Applications,2017,29,1. 95 Lloyd H, Jon R R, Alexander R, et al. Additive Manufacturing,2018,24,67. 96 Binod D, Swaroop S. Journal of Manufacturing Processes,2018,32,721. 97 Ohta A, Watanabe O, Matsuoka K, et al. Welding in the World,1999,43,38. 98 Ebrahim Harati, Leif Karlsson, Lars-Erik Svensson, et al. International Journal of Fatigue,2017,97,39. 99 Cui Z X, Qin Y C.Metallography & heat treatment. Mechanical Industry Press, China,2011(in Chinese). 崔忠圻,覃耀春.金属学与热处理,机械工业出版社,2011. 100 Liao Fangfang, Wang Mengqian, Tu Lishang, et al. Construction and Building Materials,2019,215,898. 101 Liu Y G, Li M Q. Materials Characterization,2018,144,490. 102 Bhatti A A, Barsoum Z, van der Mee V, et al. Procedia Engineering,2013,66,192. 103 Lixing H, Dongpo W, Wenxian W. Welding in the World,2004,48,34. 104 Ohta A, Suzuki N, Maddox S J. Welding in the World,2003,47(31),38. 105 Dean Deng, Hidekazu Murakawa. Computational Materials Science,2013,78,55.