Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9059-9068    https://doi.org/10.11896/cldb.19100173
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
金属焊接接头疲劳寿命延长技术综述
孙朋飞1, 姚丹丹2, 张鹏林3, 王董琪琼1, 侯嘉鹏1, 王强1,*, 张哲峰1
1 中国科学院金属研究所,沈阳 110016
2 长春轨道客车股份有限公司,长春 130062
3 兰州理工大学有色金属先进加工与再利用省部共建国家重点实验室,兰州 730050
Fatigue Life Extension Technologies for Weld Joints of Metals: a Review
SUN Pengfei1, YAO Dandan2, ZHANG Penglin3, WANG Dongqiqiong1, HOU Jiapeng1, WANG Qiang1,*, ZHANG Zhefeng1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130062, China
3 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 4631KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 疲劳断裂是金属构件在循环或交变载荷作用下长期服役过程中的主要失效形式。焊接是重要的金属成型方法,焊接接头是同种金属或异种金属连接的部位,是焊接金属构件上组织结构和力学性能的渐变区。由于金属构件服役的环境越来越苛刻,长期在循环或交变载荷作用下服役时,焊接接头的疲劳问题也越来越突出。因此,如何延长金属构件焊接接头疲劳寿命已经成为广泛关注的重要科学问题。
由于金属焊接工艺复杂,含有焊接接头的金属构件疲劳寿命受多种因素影响。本文首先总结了影响焊缝疲劳寿命的关键因素,包括组织变化、焊接缺陷、应力集中、残余应力等。由于焊接接头存在组织演变、几何结构变化以及焊接缺陷等问题,焊接接头疲劳性能通常较基体大幅下降。随后综述了多种焊缝疲劳延寿技术,如焊缝打磨技术、锤击技术、TIG熔修技术、高频机械冲击技术、低相变温度焊接材料技术等。根据焊缝疲劳延寿技术特征,大致分为焊缝形状修饰法、焊缝残余应力法和低相变温度材料法三类。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙朋飞
姚丹丹
张鹏林
王董琪琼
侯嘉鹏
王强
张哲峰
关键词:  疲劳寿命  焊缝形状修饰法  焊缝残余应力法  低相变点材料    
Abstract: Fatigue fracture is the main failure mode of metal components in long-term service under cyclic or alternating load. Welding is an important metal connection method. The weld joint is the site of the same metal or different metal connected with each other, and the chemical composition, microstructure, and mechanical properties in the weld joint change gradually. As the service environment of metal components becomes more and more severe, the fatigue of welded joints becomes more and more prominent when they are in long-term service under cyclic or alternating load. Therefore, how to improve the fatigue life of metal components with welded joints has become an important scientific issue.
Due to the complexity of metal welding process, the fatigue lives of metal components with welded joints are affected by many factors. Firstly, the key factors affecting the fatigue life of weld joint are summarized, including the microstructure evolution, welding defects, stress concentration, residual stress and so on. Attributed to microstructure evolution, geometric structure changes, and the introduction of welding defects, the fatigue properties of welded joints are usually decreased markedly as compared with that of the matrix. Subsequently, a variety of weld fatigue life extension technologies are summed up, such as weld grinding technology, hammering technology, TIG dressing technology, high frequency mechanical impact technology, low transformation temperature filler materials technology, and so on. According to the characteristics of the weld fatigue life extension technology, it can be roughly divided into three categories: weld shape modification method, weld residual stress method, and low phase change temperature material method.
Key words:  fatigue life    weld shape modification method    weld residual stress method    low phase transition temperature material
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TG405  
基金资助: 吉林省与中国科学院科技合作高技术产业化专项资金项目(2020SYHZ0017)
通讯作者:  gmwang@imr.ac.cn   
作者简介:  孙朋飞,2018年6月毕业于兰州理工大学焊接技术与工程专业,获得工学学士学位。现为兰州理工大学与中国科学院金属研究所联合培养硕士研究生,在王强副研究员的指导下进行焊缝疲劳延寿技术的研究。
王强,中科院金属研究所副研究员、硕士研究生导师。2005年毕业于太原理工大学材料成型与控制专业,同年进入吉林大学材料加工工程专业硕博连读,于2010年博士毕业。2010—2012年就职于中国石油天然气集团公司西安管材研究所,2012年进入中科院沈阳金属研究所至今。研究方向为:关键金属构件疲劳延寿技术开发与应用,表面强化技术及设备开发与应用,高强高导铝及铝合金导体材料开发与应用,高强高导铝及铝合金导线制备工艺开发及应用,高强铸造铝合金开发及应用。以此为基础,开发出新型表面旋压强化技术和新型高强高导铝合金导线加工工艺,并已发表SCI检索论文20余篇,申请发明专利10余项。
引用本文:    
孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
SUN Pengfei, YAO Dandan, ZHANG Penglin, WANG Dongqiqiong, HOU Jiapeng, WANG Qiang, ZHANG Zhefeng. Fatigue Life Extension Technologies for Weld Joints of Metals: a Review. Materials Reports, 2021, 35(9): 9059-9068.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100173  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9059
1 Wang D P, Gong B M, Wu S P, et al. Journal of East China Jiaotong University,2016,33(6),1(in Chinese).
王东坡,龚宝明,吴世品,等.华东交通大学学报,2016,33(6),1.
2 Halid Can Yıldırım. International Journal of Fatigue,2017,101,408.
3 Shang X, Marques E A S, Machado J J M, et al. Composites Part B: Engineering,2019,177,107363.
4 Yu Weiwei, Fan Minyu, Jia Wenqing, et al. International Journal of Fatigue,2019,126,143.
5 Wang M S, Li D L, Zhang E L. Hot Working Technology,2018,47(2),57(in Chinese).
王猛松,李大磊,张二亮.热加工工艺,2018,47(2),57.
6 Chen J W. Hot Working Technology,2016,45(17),201(in Chinese).
陈建武.热加工工艺,2016,45(17),201.
7 Xiong C G, He J, Chen S S. Welding Technology,2018,47(10),70(in Chinese).
熊从贵,何静,陈送送.焊接技术,2018,47(10),70.
8 Meng Q G, Yuan Z T, Yin X H. Heat Treatment,2014,29(2),54(in Chinese).
孟庆国,袁中涛,尹孝辉.热处理,2014,29(2),54.
9 Dong X C, Zhang X, Chen Y Q, et al. Materials for Mechanical Engineering,2011,35(5),31(in Chinese).
董现春,张熹,陈延清,等.机械工程材料,2011,35(5),31.
10 Lu K Y, Yang J Y, Dong J J, et al. Welding Technology,2016,45(6),74(in Chinese).
鲁克莹,杨津瑜,董俊军,等.焊接技术,2016,45(6),74.
11 Han Z X, Li C, Liu G Q, et al. Welding Technology,2019,48(8),54(in Chinese).
韩振仙,李超,柳国强,等.焊接技术,2019,48(8),54.
12 Cao K, Deng X G, Lv P Z, et al. Hot Working Technology,2019,48(1),193(in Chinese).
曹凯,邓先刚,吕品正,等.热加工工艺,2019,48(1),193.
13 Zhang Y Y, Gou G Q, Xiong J K,et al. Welding Technology,2019,48(7),6(in Chinese).
章友谊,苟国庆,熊建坤,等.焊接技术,2019,48(7),6.
14 Xue H F, Xia N, Jin W T, et al. Welding Technology,2019,48(5),77(in Chinese).
薛海峰,夏宁,金文涛,等.焊接技术,2019,48(5),77.
15 Zhang S X, Wang R, Xie X, et al. Hot Working Technology,2018,47(19),85(in Chinese).
张世欣,汪认,谢旭,等.热加工工艺,2018,47(19),85.
16 He B L, Ye B, Deng H P, et al. Transactions of the China Welding Institution,2019,40(2),31(in Chinese).
何柏林,叶斌,邓海鹏,等.焊接学报,2019,40(2),31.
17 Sun J, Ni B C, He B L. Welding Technology,2017,46(8),29(in Chinese).
孙佳,倪宝成,何柏林.焊接技术,2017,46(8),29.
18 Jin H, He B L. Ordnance Material Science and Engineering,2018,41(3),95(in Chinese).
金辉,何柏林.兵器材料科学与工程,2018,41(3),95.
19 Yan Z J, Liu X S, Fang H Y, et al. Transactions of the China Welding Institution,2013,34(4),105(in Chinese).
闫忠杰,刘雪松,方洪渊,等.焊接学报,2013,34(4),105.
20 Xie R J, Chen F R, Tang D F, et al. Transactions of the China Welding Institution,2017,38(6),56(in Chinese).
解瑞军,陈芙蓉,唐大富,等.焊接学报,2017,38(6),56.
21 Wang D S, Chen D G, Tan B, et al. Ordnance Material Science and Engineering,2009,32(5),69(in Chinese).
王冬生,陈东高,谭兵,等.兵器材料科学与工程,2009,32(5),69.
22 He B L, Jiang M M, Yu Y X, et al. Journal of Materials Engineering,2018,46(10),70(in Chinese).
何柏林,江明明,于影霞,等.材料工程,2018,46(10),70.
23 Ding J H, He B L. Ordnance Material Science and Engineering,2018,41(4),92(in Chinese).
丁江灏,何柏林.兵器材料科学与工程,2018,41(4),92.
24 Chen C Y. Fatigue and fracture, Huazhong University of Science and Technology Press, China,2011(in Chinese).
陈传尧.疲劳与断裂,华中科技大学出版社,2001.
25 Wang D P, Huo L X, Zhang Y F, et al.The Chinese Journal of Nonferrous Metals,2001(5),754(in Chinese).
王东坡,霍立兴,张玉凤,等.中国有色金属学报,2001(5),754.
26 Leitner M, Ottersböck M, Pußwald M. Engineering Structures,2018,163,215.
27 Wu L Q, Chen Q, Wang L.Electric Welding Machine,2018,48(5),40(in Chinese).
吴连强,陈强,王磊.电焊机,2018,48(5),40.
28 Zbigniew Mikulski, Tom Lassen.International Journal of Fatigue,2019,120,303.
29 John H L P, Hsin J H, Kin S T, et al. International Journal of Fatigue,2017,94,158.
30 He B L, Zhang Z S, Xie X T, et al. China Railway Science,2017,38(5),107(in Chinese).
何柏林,张枝森,谢学涛,等.中国铁道科学,2017,38(5),107.
31 Shi Q C. Electric Welding Machine,2011,41(8),29(in Chinese).
时群超.电焊机,2011,41(8),29.
32 Hajime Yamamoto, Yoshikazu Danno, Kazuhiro Ito, et al.Materials & Design,2018,160,1019.
33 Xia P X, Dong Y H, Dong Z T. Welding & Joining,1991(12),2(in Chinese).
夏丕旭,董亚辉,董增田.焊接,1991(12),2.
34 Liu J, Gou W X, Liu W, et al. Materials & Design,2009,30(6),1944.
35 Yamada K, Kakiichi T, Ishikawa T. Extending fatigue life of cracked welded joint by impact crack closure retrofit treatment. International Institute of Welding,2009.
36 Fabien Lefebvre, Catherine Peyrac, Guillaume Elbel, et al. Procedia Engineering,2015,133,454.
37 Jan Roman Hönnige, Paul Colegrove, Stewart Williams.Procedia Engineering,2017,216,8.
38 Dahle T. International Journal of Fatigue,1998,20(9),677.
39 Lopez Martinez L, Lin Peng R, Blom A F, et al. European Structural Integrity Society,1999,23,117.
40 van Es S H J, Kolstein M H, Pijpers R J M, et al. Procedia Engineering,2013,66,126.
41 Halid Can Yıldırım. International Journal of Fatigue,2015,79,36.
42 Gurney T R. Fatigue of welded structres, Cambridge University Press,1979.
43 Pijpers R J M. Fatigue strength of welded connections made of very high strength cast and rolled steels. Ph.D. Thesis, Delft University of technology, Netherlands,2011.
44 van Es S H J. Effect of TIG-dressing on fatigue strength and weld toe geometry of butt welded connections in high strength steel. Master's Thesis, Delft University of Technology, Netherlands,2012.
45 Pedersen M M, Mouritsen O Ø, Hansen M R, et al. Comparison of post weld treatment of high strength steel welded joints in medium cycle fatigue. International Institute of Welding,2009.
46 Skriko T, Ghafouri M, Björk T. International Journal of Fatigue,2017,94,110.
47 Bertil Jonsson, Yang Shin, Thomas Däuwel, et al. Procedia Engineering,2013,66,202.
48 Halid Can Yıldırım, Gary B. Marquis. Materials & Design,2014,58,543.
49 Halid Can Yıldırım, Martin Leitner, Gary B. Marquis, et al. Engineering Structures,2016,106,422.
50 Halid C Y, Gary B M. International Journal of Fatigue,2012,44,168.
51 Jörn Berg, Natalie Stranghöner. International Journal of Fatigue,2016,82,35.
52 Leitner M, Khurshid M, Barsoum Z. Engineering Structures,2017,143,589.
53 Ebrahim Harati, Lars-Erik Svensson, Leif Karlsson, et al. Procedia Structural Integrity,2016,2,3483.
54 Zhao X H, Wang D P, Wang X B, et al. Transactions of the China Wel-ding Institution,2010,31(11),57(in Chinese).
赵小辉,王东坡,王惜宝,等.焊接学报,2010,31(11),57.
55 Yao P, Zhang Z Y, Wu X Y, et al. Ordnance Material Science and Engineering,2014,37(5),94(in Chinese).
姚鹏,张志毅,吴向阳,等.兵器材料科学与工程,2014,37(5),94.
56 Hu G X, Cai X. Fundamentals of Material Science, Shanghai Jiaotong University Press, China,2010(in Chinese).
胡赓祥,蔡珣.材料科学基础,上海交通大学出版社,2010.
57 Jie R J, Qiu X M, Chen F R, et al. Transactions of the China Welding Institution,2014,35(12),35(in Chinese).
解瑞军,邱小明,陈芙蓉,等.焊接学报,2014,35(12),35.
58 Zhu Y L, Li Z M, Han Z X, et al. Rare Metal Materials and Enginee-ring,2010,39(S1),130(in Chinese).
朱有利,李占明,韩志鑫,等.稀有金属材料与工程,2010,39(S1),130.
59 Magnier A, Scholtes B, Niendorf T. Polymer Testing,2018,71,329.
60 Muránsky O, Hosseinzadeh F, Hamelin C J, et al. International Journal of Pressure Vessels and Piping,2018,164,55.
61 Stone H J, Withers P J, Roberts S M, et al. Metallurgical and Materials Transactions A,1999,30(7),1797.
62 Yang Xinjun, Ling Xiang, Zhou Jianxin. International Journal of Fatigue,2014,61,28.
63 Liu Yang, Wang Dongpo, Deng Caiyan, et al. International Journal of Fatigue,2014,66,155.
64 Hitoshi Soyama. Journal of Materials Processing Technology,2019,269,65.
65 Gill A, Telang A, Mannava S R, et al. Materials Science and Engineering A,2013,576,346.
66 Zeng X Y, Wu Y P. Surface engineering, Mechanical Industry Press, China,2003(in Chinese).
曾晓雁,吴懿平.表面工程学,机械工业出版社,2003.
67 Wei S, Wang Z, Yang Y, et al. Hot Working Technology,2020,49(9),122(in Chinese).
魏顺,汪舟,杨莹,等.热加工工艺,2020,49(9),122.
68 Wang Cheng, Wang Long, Wang Xiaogui, et al.International Journal of Mechanical Sciences,2018,146,280.
69 Torres M, Voorwald H. International Journal of Fatigue,2002,24(8),877.
70 Shiozawa K, Lu L. Fatigue & Fracture of Engineering Materials & Structures,2002,25,813.
71 Zhuang W Z, Halford G R. International Journal of Fatigue,2001,23,31.
72 Sara Bagherifard, Ramin Ghelichi, Mario Guagliano. Applied Surface Science,2012,258(18),6831.
73 Enomoto K, Hirano K, Mochizuki M, et al. Journal of the Society of Materials Science,1996,45(7),734.
74 Hitoshi Soyama, Fumio Takeo. Journal of Materials Processing Technology,2016,227,80.
75 Rajesh N, Ramesh B N. Materials and Manufacturing Processes,2006,21(4),399.
76 Rajesh N, Veeraraghavan S, Ramesh Babu N. International Journal of Machine Tools and Manufacture,2004,44,855.
77 Jiang W, Luo Y, Wang H, et al. Journal of Pressure Vessel Technology,2015,137(3),1.
78 Colosimo B M, Monno M. In: Kuljanic E(eds). AMST '99. International Centre for Mechanical Sciences (Courses and Lectures). Vienna,1999,pp. 406.
79 Balamurugan K, Uthayakumar M, Gowthaman S, et al. Engineering Fai-lure Analysis,2018,92,268.
80 Yamaguti A, Shimizu S. Journal of Fluids Engineering,1987,109(4),442.
81 Soyama H, Yanauchi Y, Sato K, et al. Experimental Thermal and Fluid Science,1996,12(4),411.
82 Foldyna J, Sitek L, Svehla B, et al. Ultrasonics Sonochemistry,2004,11(3),131.
83 OOI K K. Journal of Fluid Mechanics,1985,151,367.
84 Gopalan G, Katz J, Knio O. Journal of Fluid Mechanics,1999,398,1.
85 Hitoshi Soyama.Materials Sciences and Applications,2014,5,430.
86 Masataka Ijiri, Daichi Shimonishi, Daisuke Nakagawa, et al. Internatio-nal Journal of Lightweight Materials and Manufacture,2018,1,246.
87 Hatamleh O, Lyons J, Forman R. International Journal of Fatigue,2007,29,34.
88 Hatamleh O. Materials Science and Engineering A,2008,492,76.
89 Hatamleh O, De Wald A. Journal of Materials Processing Technology,2009,209,9.
90 Zhang L, Luo K Y, Lu J Z, et al. Materials Science and Engineering A,2011,528,7.
91 Iordachescu M, Valiente A, Caballero L, et al. Surface and Coatings Technology,2012,206,9.
92 Chen X, Wang J, Fang Y, et al. Opt Laser Technology,2014,57,64.
93 Sano Y, Masaki K, Gushi T, et al. Materials & Design,2012,36,14.
94 Tomokazu Sano, Takayuki Eimura, Ryota Kashiwabara, et al. Journal of Laser Applications,2017,29,1.
95 Lloyd H, Jon R R, Alexander R, et al. Additive Manufacturing,2018,24,67.
96 Binod D, Swaroop S. Journal of Manufacturing Processes,2018,32,721.
97 Ohta A, Watanabe O, Matsuoka K, et al. Welding in the World,1999,43,38.
98 Ebrahim Harati, Leif Karlsson, Lars-Erik Svensson, et al. International Journal of Fatigue,2017,97,39.
99 Cui Z X, Qin Y C.Metallography & heat treatment. Mechanical Industry Press, China,2011(in Chinese).
崔忠圻,覃耀春.金属学与热处理,机械工业出版社,2011.
100 Liao Fangfang, Wang Mengqian, Tu Lishang, et al. Construction and Building Materials,2019,215,898.
101 Liu Y G, Li M Q. Materials Characterization,2018,144,490.
102 Bhatti A A, Barsoum Z, van der Mee V, et al. Procedia Engineering,2013,66,192.
103 Lixing H, Dongpo W, Wenxian W. Welding in the World,2004,48,34.
104 Ohta A, Suzuki N, Maddox S J. Welding in the World,2003,47(31),38.
105 Dean Deng, Hidekazu Murakawa. Computational Materials Science,2013,78,55.
[1] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[2] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[3] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[4] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[5] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[6] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[7] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[8] 孙志礼, 柴小冬, 柳溪溪, 王健. 基于损伤力学的疲劳裂纹萌生及扩展规律研究*[J]. CLDB, 2017, 31(8): 130-134.
[9] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[10] 肖智杰, 曾凯, 何晓聪, 邢保英, 张龙, 孙鑫宇. SUS304不锈钢点焊与胶焊接头的疲劳强度分析*[J]. 《材料导报》期刊社, 2017, 31(16): 112-116.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed