Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6146-6150    https://doi.org/10.11896/cldb.20020078
  金属与金属基复合材料 |
电化学修复后不同含氢钢筋的低周疲劳性能试验研究
龚园军1,2, 张军2, 毛江鸿2, 金伟良2, 谭昱3, 罗林1
1 重庆交通大学土木工程学院,重庆 400074
2 浙大宁波理工学院,宁波 315100
3 浙江舟山北向大通道有限公司,舟山 316000
Experimental Study on Low Cycle Fatigue Properties of Different Hydrogen Containing Steel Bars After Electrochemical Repair
GONG Yuanjun1,2, ZHANG Jun2, MAO Jianghong2, JIN Weiliang2, TAN Yu3, LUO Lin1
1 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 Ningbo Tech University, Ningbo 315100, China
3 Zhejiang Zhoushan North Channel Co., Ltd., Zhoushan 316000, China
下载:  全 文 ( PDF ) ( 4703KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过电化学充氢试验和低周疲劳试验,分析了电化学修复后含氢钢筋的疲劳寿命、滞回曲线、剩余强度等关键力学指标。研究结果表明:钢筋试件通电时间越长、电流密度越大,钢筋内氢含量越多,且钢筋氢含量与电通量密度呈线性关系;依据氢含量与疲劳寿命的关系可将电化学修复的负面影响程度分为A、B、C三个区域;随着氢含量增大,循环剩余强度退化加快,疲劳寿命和耗能能力降低也越显著;氢含量小于1.7×10-6时,1%应力幅下钢筋试件低周疲劳寿命降低小于15%;氢含量为4.3×10-6时,钢筋试件低周疲劳寿命降低73.7%。本研究结果可为电化学修复技术应用于有抗震性能要求的混凝土结构提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚园军
张军
毛江鸿
金伟良
谭昱
罗林
关键词:  钢筋低周疲劳  电化学修复  氢含量  滞回曲线  疲劳寿命    
Abstract: This paper attempts to analyze the fatigue life, hysteresis curve, residual strength and other mechanical indexes of steel bars with hydrogen by virtue of experiment on electrochemical hydrogen permeation and low cycle fatigue. Results show that the longer the electrification time and the higher the current density, the more the hydrogen content in the steel. And the linear relationship between the hydrogen content and the electric flux density is established. According to the relationship between the hydrogen content and the fatigue life, the negative effects of the electrochemical repair are divided into three areas. With the increasing hydrogen content, the degradation of the cyclic residual strength accelerates, meanwhile the fatigue life and energy consumption capacity decrease significantly. When the hydrogen content is less than 1.7×10-6, the low-cycle fatigue life of steel specimens decreases by less than 15% with 1% strain range. When the hydrogen content is 4.3×10-6, the low-cycle fatigue life of the steel specimens decreases by 73.7%. This study provides a reference for the application of electrochemical repair technology on concrete structures with seismic requirements.
Key words:  low cycle fatigue of steel    electrochemical repair    hydrogen content    hysteresis curve    fatigue life
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TU375  
基金资助: 国家自然科学基金(51638013;51878610;51908496;51820105012);浙江省自然科学基金(LQ19E080011;LY18E080003)
通讯作者:  zj@nit.zju.edu.cn   
作者简介:  龚园军,重庆交通大学硕士研究生,建筑与土木工程专业,研究方向为混凝土结构耐久性和电化学修复技术。
张军,讲师,2017年获得浙江大学结构工程博士学位,研究工作主要包括混凝土结构长期性能与提升技术的研发和应用。已在国内外学术刊物发表SCI/EI论文10余篇。
引用本文:    
龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
GONG Yuanjun, ZHANG Jun, MAO Jianghong, JIN Weiliang, TAN Yu, LUO Lin. Experimental Study on Low Cycle Fatigue Properties of Different Hydrogen Containing Steel Bars After Electrochemical Repair. Materials Reports, 2021, 35(6): 6146-6150.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020078  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6146
1 Li Z, Jin Z Q, Shao S S, et al. Materials Reports A: Review Papers,2018,32(12),4170(in Chinese).
李哲,金祖权,邵爽爽,等.材料导报:综述篇,2018,32(12),4170.
2 Mao J H, Jin W L, Li Z Y, et al. China Journal of Road Transport,2016,29(1),61(in Chinese).
毛江鸿,金伟良,李志远,等.中国公路学报,2016,29(1),61.
3 Mao J H, Jin W L, Zhang H, et al. Journal of Chinese Society for Corrosion and Protection,2015,35(6),87(in Chinese).
毛江鸿,金伟良,张华,等.中国腐蚀与防护学报,2015,35(6),87.
4 Zhang J, Jin W L, Mao J H, et al. Construction and Building Materials,2020,237,117629.
5 Xu C, Jin W L, Huang N, et al. Journal of Zhejiang University(Engineering Science),2015,49(6),1128(in Chinese).
许晨,金伟良,黄楠,等.浙江大学学报(工学版),2015,49(6),1128.
6 Jin W L, Chen J Y, Mao J H, et al. Engineering Mechanics,2016,33(2),9(in Chinese).
金伟良,陈佳芸,毛江鸿,等.工程力学,2016,33(2),9.
7 Yang C, Mao J H, Sun Y, et al. Journal of Civil and Environmental Engineering,2018,40(4),81(in Chinese).
杨超,毛江鸿,孙洋,等.土木建筑与环境工程,2018,40(4),81.
8 Zhang W W, Mao J H, Sun Y, et al. Building Science,2018,34(1),38(in Chinese).
张文文,毛江鸿,孙洋,等.建筑科学,2018,34(1),38.
9 Mao Jianghong, Jin Weiliang, Zhang Jun, et al. Construction and Buil-ding Materials,2019,231(7),582.
10 Siegwart M, Lyness J F, Mcfarland B J, et al. Construction and Building Materials,2005,19(8),585.
11 Jayalakshmi S, Kim K B. Journal of Alloys and Compounds,2006,417(1-2),195.
12 Guo Y J, Wang C F, Li J X, et al. Journal of Aeronautical Materials,2012,32(3),000005-9(in Chinese).
郭昀静,王春芳,李建锡,等.航空材料学报,2012,32(3),000005-9.
13 Xie Z K, Jin W L, Mao J H, et al, Materials Reports B: Research Papers,2020,34(1),02039(in Chinese).
谢振康,金伟良,毛江鸿,等.材料导报:研究篇,2020,34(1),02039.
14 Long J X, Jin W L, Zhang J, et al. Journal of Zhejiang University (Engineering Science),2020,54(1),64(in Chinese).
龙江兴,金伟良,张军,等.浙江大学学报(工学版),2020,54(1),64.
15 Jin W L, Wu X X, Mao J H, et al. The Ocean Engineering,2017(5),88(in Chinese).
金伟良,伍茜西,毛江鸿,等.海洋工程,2017(5),88.
16 Li T, Jin W L, Xu Chen, et al. Journal of Chinese Society for Corrosion and Protection,2017(4),80(in Chinese).
李腾,金伟良,许晨,等.中国腐蚀与防护学报,2017(4),80.
17 Capelle J, Dmytrakh I, Azari Z, et al. International Journal of Hydrogen Energy,2013,38(33),14356.
18 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China/China National Standardization Management Committee. GB/T 15248—2008 Test method for axial constant amplitude low cycle fatigue of metallic materials, China, 2008.
中国人民共和国国家质量监督检验检疫总局/中国国家标准化管理委员会.GB/T 15248—2008金属材料轴向等幅低循环疲劳试验方法,中国,2008.
19 General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China/China National Standardization Management Committee. GB/T 223. 82-2007, Steel-determination of hydrogen content-Inert gas pulse melting thermal conductivity method,China,2007.
中国人民共和国国家质量监督检验检疫总局/中国国家标准化管理委员会.GB/T 223.82-2007,钢铁氢含量的测定惰气脉冲熔融热导法,中国,2007.
20 Lei D, Zhao J H, Gong M, et al. Journal of Experimental Mechanics,2008(5),60(in Chinese).
雷冬,赵建华,龚明,等.实验力学,2008(5),60.
21 Li L, Liyang X, Xuehong H, et al. China Mechanical Engineering,2009,20(23),2890.
[1] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[2] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[3] 谢振康, 金伟良, 毛江鸿, 张军, 樊玮洁, 夏晋. 双向电迁移后混凝土内钢筋氢含量变化及影响[J]. 材料导报, 2020, 34(2): 2039-2045.
[4] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[5] 费文潘, 薛松柏, 陈宇豪, 吴杰, 王博, 林中强. Sr、La复合添加对SAl 4047焊丝氢含量及焊接接头力学性能的影响[J]. 材料导报, 2020, 34(10): 10150-10156.
[6] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[7] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[8] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[9] 孙志礼, 柴小冬, 柳溪溪, 王健. 基于损伤力学的疲劳裂纹萌生及扩展规律研究*[J]. CLDB, 2017, 31(8): 130-134.
[10] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[11] 肖智杰, 曾凯, 何晓聪, 邢保英, 张龙, 孙鑫宇. SUS304不锈钢点焊与胶焊接头的疲劳强度分析*[J]. 《材料导报》期刊社, 2017, 31(16): 112-116.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed