Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2039-2045    https://doi.org/10.11896/cldb.18120112
  无机非金属及其复合材料 |
双向电迁移后混凝土内钢筋氢含量变化及影响
谢振康1,2, 金伟良1, 毛江鸿2, 张军2, 樊玮洁2, 夏晋1
1 浙江大学结构工程研究所,杭州 310058
2 浙江大学宁波理工学院,宁波 315100
Variation and Impact of Hydrogen Content of Reinforcing Bars in Concrete Caused by Bidirectional Electromigration
XIE Zhenkang1,2, JIN Weiliang1, MAO Jianghong2, ZHANG Jun2, FAN Weijie2, XIA Jin1
1 Institute of Structural Engineering,Zhejiang University,Hangzhou 310058,China
2 Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,China
下载:  全 文 ( PDF ) ( 5540KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究双向电迁移修复过程混凝土内钢筋表面析氢对钢筋的影响,对混凝土试块进行了不同通电时间、不同电流密度下的双向电迁移修复试验。通过对钢筋中氢含量的检测定量研究了钢筋的渗氢程度,通过恒应变速率拉伸试验和钢筋断口电镜扫描研究了钢筋的力学性能变化,并与电化学除氯进行了对比。结果表明,随着通电时间的延长以及电流密度的增大,混凝土内钢筋氢含量增加,钢筋塑性下降,钢筋断口韧窝尺寸变小,深度变浅,氢脆风险增加;相比电化学除氯,双向电迁移可以有效抑制渗透进入钢筋中的氢含量,降低钢筋氢脆风险;同时定量分析表明钢筋中氢含量与钢筋塑性存在较好的相关性,氢含量每增加1 μg/g,钢筋断裂能比就下降12.18%,氢脆敏感性系数增加9.92%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢振康
金伟良
毛江鸿
张军
樊玮洁
夏晋
关键词:  混凝土耐久性  双向电迁移  氢含量  氢脆  塑性降低    
Abstract: Bidirectional electromigration repair tests were carried out on concrete specimens under different electrification duration and current density, for the sake of digging out the effect of hydrogen evolution on steel bars in concrete during bidirectional electromigration repair process. Hydrogen permeation degree of steel bars was determined by quantitatively measurement of hydrogen content in steel bars. The mechanical properties of steel bars were studied by constant strain rate tensile test and scanning electron microscope observation on fracture. Electrochemical chloride extraction was also conducted for comparison. In light of the results, extending the electrification time and enlarging the current density would give rise to a series variations: the increase in hydrogen content of reinforcing bar in concrete, the reduction in plasticity of reinforcing bar, the size diminishing and depth decrease of fracture dimple of reinforcing bar, and the risk of hydrogen embrittlement increased. Compared with electroche-mical chloride extraction, bidirectional electromigration could effectively inhibit hydrogen penetration into steel bars and reduce the risk of hydrogen embrittlement of steel bars. Furthermore, the quantitative analysis indicated that there was a good correlation between the hydrogen content in steel bars and the plastic properties of steel bars. Specifically, every 1 μg/g increase in hydrogen content would bring about a 12.18% decrease in fracture energy ratio of steel bars and a 9.92% increase in hydrogen embrittlement sensitivity coefficient.
Key words:  concrete durability    bidirectional electromigration    hydrogen content    hydrogen embrittlement    plasticity reduction
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TU511.3  
基金资助: 国家自然科学基金(51878610;51638013;51820105012;51578490);浙江省自然科学基金(Y18E080008;Q19E080024;Q19E080011)
通讯作者:  jhmao@nit.zju.edu.cn   
作者简介:  谢振康,男,1994年7月生,浙江大学硕士研究生,建筑与土木工程专业,硕士期间研究方向为:混凝土结构耐久性和电化学修复技术;毛江鸿,男,1985年7月生,博士,副教授,2012年获得浙江大学结构工程博士学位。研究工作主要包括工程结构健康监测技术研发与应用、混凝土结构耐久性电化学修复技术研发与应用。已在国内外学术期刊发表学术论文70余篇,参编专著1部,授权国家发明专利9项,相关研究成果获宁波市科学进步一等奖一项。
引用本文:    
谢振康, 金伟良, 毛江鸿, 张军, 樊玮洁, 夏晋. 双向电迁移后混凝土内钢筋氢含量变化及影响[J]. 材料导报, 2020, 34(2): 2039-2045.
XIE Zhenkang, JIN Weiliang, MAO Jianghong, ZHANG Jun, FAN Weijie, XIA Jin. Variation and Impact of Hydrogen Content of Reinforcing Bars in Concrete Caused by Bidirectional Electromigration. Materials Reports, 2020, 34(2): 2039-2045.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120112  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2039
1 Jin W L, Zhao Y X. Durability of concrete structures, Science Press, China, 2014(in Chinese).金伟良, 赵羽习. 混凝土结构耐久性, 科学出版社, 20142 Liu Y, Du R G, Ling C J. Corrosion Science and Protection Technology, 2008, 20(2),125(in Chinese).刘玉, 杜荣归, 林昌健. 腐蚀科学与防护技术, 2008, 20(2),125.3 Sun W B, Gao X J, Yang Y Z, et al. Corrosion Science and Protection Technology, 2009, 21(3),308(in Chinese).孙文博, 高小建, 杨英姿, 等. 腐蚀科学与防护技术, 2009, 21(3),308.4 Jing Z W. Materials Review, 2008, 22(2), 78(in Chinese).蒋正武. 材料导报, 2008, 22(2), 78.5 Tang J W, Li S L, Cai W C, et al. The Ocean Engineering, 2008, 26(3), 87(in Chinese).唐军务, 李森林, 蔡伟成, 等. 海洋工程, 2008, 26(3), 87.6 Xu C, Jin W L, Huang N, et al. Journal of Zhejiang University(Engineering Science), 2015, 49(6), 1128(in Chinese).许晨, 金伟良, 黄楠, 等. 浙江大学学报(工学版), 2015, 49(6), 1128.7 Wang W L, Xu J X, Gao G F, et al. Journal of Hohai University(Natural Sciences), 2014, 42(6), 535(in Chinese).王卫仑, 徐金霞, 高国福, 等. 河海大学学报(自然科学版), 2014, 42(6), 535.8 Shan H Y, Xu J X, Jiang L H. Materials Review B: Research Papers, 2016, 30(7), 1(in Chinese).单鸿猷, 徐金霞, 蒋林华. 材料导报:研究篇, 2016, 30(7), 1.9 Ministry of Transport of the People's Republic of China. JTS 153-2-2012, Technical Specification for Electrochemical Corrosion Protection of Reinforced Concrete Structures in Harbour Engineering. China, 2012.中华人民共和国交通运输部. JTS 153-2-2012, 海港工程钢筋混凝土结构电化学防腐技术规范. 中国, 2012.10 Jayalakshmi S, Kim K B, Fleury E. Journal of Alloys & Compounds, 2006, 417(1-2), 195.11 Sun Y W, Chen J Z, Liu J. Acta Metallurgica Sinica, 2015, 51(11), 1315(in Chinese).孙永伟, 陈继志, 刘军. 金属学报, 2015, 51(11), 1315.12 Siegwart M, Lyness J F, McFarland B J, et al. Construction and Building Materials, 2005, 19(8), 585.13 Ueda T, Ashida M, Mizoguchi S, et al. Proceedings of the Japan Society of Civil Engineers, 2010, 35(613), 189.14 Chen J Y. Effect of electrochemical rehabilitation on stressed steel bar in concrete simulated solution. Master’s Thesis, Zhejiang University, China, 2016(in Chinese).陈佳芸. 电化学修复技术对混凝土模拟溶液中受力钢筋的作用效应. 硕士学位论文, 浙江大学, 2016.15 Li T. Experimental study on hydrogen embrittlement evaluation and control of reinforced concrete structures under electrochemical remediation. Master’s Thesis, Zhejiang University, China, 2017(in Chinese).李腾. 电化学修复中混凝土结构中受力钢筋氢脆评估与控制试验研究. 硕士学位论文, 浙江大学, 2017.16 Xu C, Jin W L, Zhang S Y. Jouenal of Building Materials, 2014, 17(4), 572(in Chinese).许晨, 金伟良, 章思颖. 建筑材料学报, 2014, 17(4), 572.17 Xu C, Jin W L, Zhang S Y. Journal of Building Materials, 2014,17(5), 761(in Chinese).许晨, 金伟良, 章思颖. 建筑材料学报, 2014, 17(5), 761.18 Jin W L, Huang N, Xu C, et al. Journal of Zhejiang University(Engineering Science), 2014, 48(9), 1586(in Chinese).金伟良, 黄楠, 许晨, 等. 浙江大学学报(工学版), 2014, 48(9), 1586.19 Mao J H, Jin W L, Zhang H, et al. Journal of Chinese Society for Corrosion and Protection, 2015, 35(6), 563(in Chinese).毛江鸿, 金伟良, 张华, 等. 中国腐蚀与防护学报, 2015, 35(6), 563.20 Zhu Y F, Mao J H, Jin W L, et al. Building Structure, 2018(2), 14(in Chinese).朱垚锋, 毛江鸿, 金伟良, 等. 建筑结构, 2018(2), 14.21 Zhang Y, Zhang J X, Wang K. Material Protection, 2009, 42(8), 51(in Chinese).张羽, 张俊喜, 王昆, 等. 材料保护, 2009, 42(8),51.22 Stahle R W. In: International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys. France, 1973, DOI:10.1149/1.2129122.23 Chu W Y, Li S Q, Xiao J M, et al. Journal of University of Science and Technology Beijing, 1979, 16(1), 179(in Chinese).褚武扬, 李世琼, 肖纪美, 等. 北京科技大学学报, 1979, 16(1), 179.24 Chu W Y, Hsiao C M, Li S Q. Engineering Fracture Mechanics, 1982, 16(1), 115.25 Chu W Y, Wang H L, Ma R T, et al. Acta Metallurgica Sinica, 1985, 21(1), 86(in Chinese).褚武扬, 王核力, 马若涛, 等. 金属学报, 1985, 21(1), 86.26 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China/China National Standardization Ma-nagement Committee. GB/T 223.82-2007, Steel-determination of hydrogen content-Inert gas pulse melting thermal conductivity method. China, 2007.中国人民共和国国家质量监督检验检疫总局/中国国家标准化管理委员会. GB/T 223.82-2007, 钢铁氢含量的测定 惰气脉冲熔融热导法. 中国, 2007.27 Zhang S H, Wang R, Luo S J. Corrosion & Protection, 2009, 30(3), 172(in Chinese).张士欢, 王荣, 雒设计. 腐蚀与防护, 2009, 30(3), 172.28 Zeng X G, Liu K, Luo H, et al. Hot Working Technology, 2015(6),41(in Chinese).曾宪光, 刘康, 罗宏, 等. 热加工工艺, 2015(6), 41.29 Yang Y J, Li Z T, Pang X L, et al. Corrosion & Protection, 2009, 30(11), 787(in Chinese).杨勇进, 李宗田, 庞晓露, 等. 腐蚀与防护, 2009, 30(11), 787.30 Billingham M, John G. In: CORROSION 2008. NACE International, 2008.
[1] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[2] 费文潘, 薛松柏, 陈宇豪, 吴杰, 王博, 林中强. Sr、La复合添加对SAl 4047焊丝氢含量及焊接接头力学性能的影响[J]. 材料导报, 2020, 34(10): 10150-10156.
[3] 李凤侠, 张俊, 赵呈刚. 基于文献计量学的氢脆研究的演进、热点和趋势分析[J]. 材料导报, 2019, 33(Z2): 488-496.
[4] 翟建明, 徐彤, 王红霞, 马广青, 商学欣. 316L与16Mn材料抗高压氢脆性能研究[J]. 材料导报, 2019, 33(Z2): 497-500.
[5] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[6] 黄广棋,张桂凯,罗朝以,唐涛. Fe-Al金属间化合物氢脆效应研究现状[J]. 《材料导报》期刊社, 2018, 32(11): 1878-1883.
[7] 高心心, 郭建章, 张海兵. 1 000 MPa级高强钢焊接件的氢脆敏感性研究[J]. 《材料导报》期刊社, 2017, 31(6): 93-97.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed