Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2034-2038    https://doi.org/10.11896/cldb.18120161
  无机非金属及其复合材料 |
稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型
张学元, 吕春, 张道明, 王丽, 李扬
齐齐哈尔大学建筑与土木工程学院,齐齐哈尔 161006
Performance of Increasing Toughness of Straw Fiber in Lightweight Aggregate Concrete and Its Prediction Model of Splitting Tensile Strength
ZHANG Xueyuan, LYU Chun, ZHANG Daoming, WANG Li, LI Yang
School of Architecture and Civil Engineering,Qiqihar University,Qiqihar 161006,China
下载:  全 文 ( PDF ) ( 2904KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土强度等级越高,脆性越大,此类问题在轻骨料混凝土中更为突出。采用钢纤维、碳纤维、聚丙烯纤维等对其进行增韧,虽能取得一定效果,但对工程造价和环境的影响较显著。基于植物纤维具有来源广泛、环境友好等特点,以粉煤灰陶粒混凝土为例,探寻了稻草纤维掺量、形状、长度和粉煤灰掺量对其力学性能的影响;基于界面过渡区理论,从轻骨料混凝土拉压比、抗冲击强度角度分析了稻草纤维的增韧效果。结果表明:拉压比随纤维掺量的增加而增加,随纤维长度、粉煤灰掺量的增加而减小;纤维改性后拉压比虽出现了降低,但仍高于无纤维组;稻草纤维提高拉压比的效果与其他纤维相近,且改性后提高抗冲击强度效果显著。基于回归分析,提出了混凝土劈裂抗拉强度预测模型,验证结果表明:该模型预测值与文献试验值相对误差在7%以内;混凝土强度等级越高,预测结果越准确,该模型可用于纤维轻骨料混凝土、高性能混凝土劈裂抗拉强度的预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张学元
吕春
张道明
王丽
李扬
关键词:  稻草纤维  粉煤灰陶粒  减脆增韧  界面过渡区  拉压比  劈裂抗拉强度    
Abstract: The higher the concrete strength grade, the greater the brittleness, and such problems are more prominent in lightweight aggregate concrete. Using steel fiber, carbon fiber, polypropylene fiber, etc. to increase the toughness of concrete, although it can achieve certain effects, but has a significant impact on project cost and environment. Based on the wide range of plant fiber sources and environmental friendliness, taking fly ash ceramsite concrete as an example, the influence of straw fiber amount, shape, length and amount of fly ash on the mechanical properties of fly ash ceramsite concrete was explored. Based on the interface transition zone theory, the effect of straw fiber on enhancing toughness was analyzed from the perspective of concrete tensile and compression ratio and impact strength. The results showed that the tensile-compression ratio increases with the increase of straw fiber content, and decreases with the increase of fiber length and fly ash content, the tensile-compression ratio decreases after the fiber modification, but higher than the fiber-free group, the effect of straw fiber on increasing the tensile-compression ratio is similar to that of other fibers, and the effect of improving the impact strength of concrete after modification is remarkable. Based on regression analysis, a prediction model for splitting tensile strength of fiber lightweight aggregate concrete was proposed. The verification results showed that the relative error between the predicted value of the model and the experimental value of the literature was within 7%, the higher the concrete strength level, the more accurate the prediction result, it can be used to predict the tensile strength of fiber concrete and high performance concrete.
Key words:  straw fiber    fly ash ceramsite    embrittlement reduction and increase toughness    interface transition zone    tension and compression ratio    splitting tensile strength
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TU528.58  
基金资助: 黑龙江省教育厅基本业务专项面上项目(135209232);齐齐哈尔大学科研资助项目(135309357);黑龙江省教育厅基本业务专项青年项目(135209310)
通讯作者:  yuanxvezhang@126.com   
作者简介:  张学元,齐齐哈尔大学,讲师。2012年7月毕业于东北大学,结构工程专业硕士。同年加入齐齐哈尔大学建筑与土木工程学院至今,主要从事建筑材料、建筑结构领域的教学与科研工作,重点研究再生混凝土、轻骨料混凝土的力学性能及其工程应用。在国内中文核心期刊发表文章4篇,申报专利6项。
引用本文:    
张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
ZHANG Xueyuan, LYU Chun, ZHANG Daoming, WANG Li, LI Yang. Performance of Increasing Toughness of Straw Fiber in Lightweight Aggregate Concrete and Its Prediction Model of Splitting Tensile Strength. Materials Reports, 2020, 34(2): 2034-2038.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120161  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2034
1 Li R,Li J Z,Meng Y F. Yellow River, 2015,37(2),136(in Chinese).李瑞,李金泽,孟云芳. 人民黄河, 2015,37(2),136.2 Li Rui,Zhang Xiaohua,Meng Yunfang. Advanced Materials Research, 2014, 3295 (977),120.3 Gong Jianqing, Zeng Wei, Zhang Wenjie. Construction and Building Materials, 2018, 159,155.4 Jiang C S. Research on brittleness mechanism and modification of high strength light weight concrete. Doctor’s Thesis, Wuhan University of Technology,China,2010(in Chinese).姜从盛.轻质高强混凝土脆性机理与改性研究.博士学位论文,武汉理工大学,2010.5 Feraidon Ataie. Sustainability, 2018, 10 (7),2445.6 Li C F,Su Y W,Chen G P,et al. Construction Technology, 2013,42(24),63(in Chinese).李超飞,苏有文,陈国平,等. 施工技术, 2013,42(24),63.7 Li C F,Su Y W,Chen G P,et al. Concrete, 2013(10),30(in Chinese).李超飞,苏有文,陈国平,等. 混凝土, 2013(10),30.8 Chen B, Lu Y B, Su S, et al. China Concrete and Cement Products,2017(10),85(in Chinese).陈斌,卢玉斌,苏实,等. 混凝土与水泥制品, 2017(10),85.9 Jian S W, Wang T, Ma B G, et al. Materials Review B: Research Papers, 2014,28(3),132(in Chinese).蹇守卫,汪婷,马保国,等. 材料导报:研究篇, 2014,28(3),132.10 Li W Y, Lu J Q, Xu Y B. Special material new concrete technology, Chemical Industry Press,China,2007(in Chinese).李伟业,刘经强,徐羽白. 特殊材料新型混凝土技术, 化学工业出版社,2007.11 Zhang Y N, Li Z H, Liu X Y, et al. Journal of Jiangsu University (Na-tural Science Edition) , 2017,38(6),719(in Chinese).张延年,李振会,刘晓阳,等. 江苏大学学报(自然科学版), 2017,38(6),719.12 Liu S B, Xu L H. Journal of Wuhan Institute of Technology,2012,34(9),17(in Chinese).刘胜兵,徐礼华. 武汉工程大学学报, 2012,34(9),17.13 Sun N P. Building Science,2014,30(7),19(in Chinese).孙南屏. 建筑科学, 2014,30(7),19.14 Liao Z Y, Lei J S, Chen M T, et al. China Concrete and Cement Products,2017(7),47(in Chinese).廖昭印,雷劲松,陈梦婷,等. 混凝土与水泥制品, 2017(7),47.15 Li J Z, Mou W N,Wang L, et al. Journal of Yangtze River Scientific Research Institute, 2017,34(8),139(in Chinese).李家正,牟伟楠,王磊,等. 长江科学院院报, 2017,34(8),139.16 Chen W. Synergic action of lightweight aggregate-matrix on performance of concrete. Doctor’s Thesis, Chongqing University, China, 2013(in Chinese).陈伟.轻集料-基体协同作用对混凝土性能的影响.博士学位论文,重庆大学,2013.17 Chen L L, Wu F F, He Z Y. Concrete, 2016(9),37(in Chinese).陈亮亮,吴福飞,何周勇. 混凝土, 2016(9),37.18 Yu P. Property study on sintered fly-ash concrete. Master’s Thesis, Dalian Jiaotong University, China, 2009(in Chinese).于萍.粉煤灰陶粒混凝土的性能研究.硕士学位论文,大连交通大学,2009.19 Dong X, Gao J M, Ji B H.Industrial Building,2005,35(Supplement),680(in Chinese).董祥,高建明,吉伯海. 工业建筑, 2005,35(增刊),680.20 Yin J, Zhou S Q. Journal of Changsha Railway University, 2001,19(2),25(in Chinese).尹健,周士琼. 长沙铁道学院学报, 2001,19(2),25.
[1] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[2] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[3] 周谟金, 蒋业华, 卢德宏, 张孝足. B4C包覆ZTA颗粒增强铁基复合材料制备与性能[J]. 材料导报, 2018, 32(24): 4324-4328.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed