Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2029-2033    https://doi.org/10.11896/cldb.18110188
  无机非金属及其复合材料 |
液相汽化TG-CVI法制备C/C复合材料的组织和性能
季根顺1,2, 陈晓龙1,2, 贾建刚1,2, 李小龙1, 龚静博1, 郝相忠3
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学白银新材料研究院,白银 730900
3 甘肃郝氏炭纤维有限公司技术中心,兰州 730010
Liquid Phase Vaporization TG-CVI Method Prepared C/C Composites: Microstructure and Properties
JI Genshun1,2, CHEN Xiaolong1,2, JIA Jiangang1,2, LI Xiaolong1, GONG Jingbo1, HAO Xiangzhong3
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology,Lanzhou 730050,China
2 Baiyin Research Institute of Novel Materials,Lanzhou University of Technology,Baiyin 730900,China
3 Technology Center of Gansu Haoshi Carbon Fiber Co.Ltd,Lanzhou 730010,China
下载:  全 文 ( PDF ) ( 4426KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高C/C复合材料的致密化速率,本研究以环己烷为碳源前驱体、普通碳毡为预制体,设计了前驱体蒸发与热解碳沉积一体的沉积装置。采用液相汽化TG-CVI法快速制备C/C复合材料,并对复合材料进行2 000 ℃下保温2 h的高温热处理。采用偏光显微镜(PLM)、扫描电子显微镜(SEM)、X射线衍射(XRD)仪表征了复合材料的显微组织、断口形貌、物相结构及晶化程度,并采用万能试验机测试复合材料的抗弯强度。结果表明,初始密度为0.14 g/cm3的环形预制体在温度为1 000 ℃及压力为20 kPa下沉积20 h后,其平均密度可达1.65 g/cm3;液相汽化TG-CVI的致密化速率为0.075 5 g·cm-3·h-1,较传统ICVI提高了近一个数量级;复合材料的组织均为粗糙层热解碳,弯曲强度约为63.24 MPa,断裂形式为假塑性断裂。复合材料经2 000 ℃下2 h热处理后,C(002)层间距显著减小,微晶由乱层结构向理想石墨转化,具有较高的石墨化度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季根顺
陈晓龙
贾建刚
李小龙
龚静博
郝相忠
关键词:  C/C复合材料  热解碳结构  高温热处理  石墨化  抗弯强度    
Abstract: For the sake of improving the densification rate of C/C composites, a reaction device combining precursor evaporation and pyrolytic carbon deposition was designed, taking cyclohexane as the carbon source precursor and carbon felt as the preform. Rapid preparation of the C/C composites was implemented by liquid phase vaporization TG-CVI and followed by heat treatment on the C/C composites at 2 000 ℃ for 2 h. Polarized light microscopy (PLM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the microstructure, fracture morphology, phase structure and crystallization degree of the C/C composites. Further, the bending strength of the C/C composites was measured by universal testing machine. According to the results, the annular preform with initial density of 0.14 g/cm3 can attain the average density of 1.65 g/cm3 after 20 h long experience under 1 000 ℃ and 20 kPa. A 0.075 5 g·cm-3·h-1 densification rate of liquid phase vaporization TG-CVI was achieved, which was nearly an order of magnitude higher than that of conventional ICVI. Rough layer carbon pyrolytic constituted the structure of the C/C composites, and the C/C composites presented a bending strength of about 63.24 MPa, and pseudo-plastic fracture. Undergoing heat treatment at 2 000 ℃ for 2 h, there were a phenomenal narrowing in the C(002) plane space, a converting of crystallites structure from chaotic graphite to ideal graphite crystal, and a considerable degree of graphitization in the C/C composites.
Key words:  C/C composites    pyrolytic carbon structure    high temperature heat treatment    graphitization    fracture strength
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TB332  
基金资助: 甘肃省科技重大专项(1602GKDD012)
通讯作者:  jigsh@lut.cn   
作者简介:  季根顺,兰州理工大学教授,硕士研究生导师。1995年研究生毕业于西安交通大学材料学院。负责完成多项科研项目,并通过甘肃省科委组织的专家鉴定,其中“合金奥氏体-贝氏体球墨铸铁的开发应用研究”获得国家机械工业局科技进步三等奖。目前主要从事碳/碳复合材料的低成本快速致密化、碳材料抗氧化防护、碳纤维增强的金属基复合材料等方面的研究,并主持甘肃省科技重大专项计划一项。
引用本文:    
季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
JI Genshun, CHEN Xiaolong, JIA Jiangang, LI Xiaolong, GONG Jingbo, HAO Xiangzhong. Liquid Phase Vaporization TG-CVI Method Prepared C/C Composites: Microstructure and Properties. Materials Reports, 2020, 34(2): 2029-2033.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110188  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2029
1 Xie H Z, Sun J T, He X Y, et al. Materials Review B:Research Papers, 2018,32(1),268(in Chinese).解惠贞,孙建涛,何轩宇,等. 材料导报:研究篇, 2018,32(1),268.2 Zheng J X, Zhang F Q, Huang H, et al. Materials Science and Enginee-ring of Powder Metallurgy, 2017,22(3),329(in Chinese).郑吉祥,张福勤,黄华,等. 粉末冶金材料科学与工程, 2017,22(3),329.3 Yang Y P, Cui H, He X Y, et al. Carbon, 2018(3),10(in Chinese).杨云鹏,崔红,何轩宇,等. 炭素, 2018(3),10.4 Hang Q Z. Preparation, structure and application of high performance carbon/carbon composites, Central South University Press, China, 2010(in Chinese).黄启忠. 高性能炭/炭复合材料的制备、结构与应用, 中南大学出版社, 2010.5 Xu L,Yang W B, Chen Z, et al. Acta Materiae Compositae Sinica, 2016,33(12),2877(in Chinese).徐林,杨文彬,陈铮,等. 复合材料学报, 2016,33(12),2877.6 Tang Z H,Qu D N,Xiong J, et al. Carbon, 2003,41,2703.7 Lieberman M L, Pierson H O. Carbon, 1974,12,233.8 Houdayer M, Spitz J, Trancan D. US Patent, US4472454,1984.9 Li K Z, Li X T, Li H J, et al. Tribology, 2008(1),50(in Chinese).李克智,李新涛,李贺军,等. 摩擦学学报, 2008(1),50.10 王继平,金志浩,乔冠军.中国专利, 200510096306.2,2015.11 Li J Y, Luo R Y. Synthetic Materials Agingand Application, 2016,45(1),43(in Chinese).李静尧,罗瑞盈. 合成材料老化与应用, 2016,45(1),43.12 Tang Z H, Zhang H P, Zou Z Q. The Chinese Journal of Nonferrous Me-tals, 2003(3),651(in Chinese).汤中华,张海坡,邹志强. 中国有色金属学报, 2003(3),651.13 Wang J D, Chuai Y M, Guo B,et al. Carbon Techniques, 2018,37(4),26(in Chinese).王金铎,啜艳明,郭宾,等. 炭素技术, 2018,37(4),26.14 Zhang W G, Hu Z J, Hüttinger K J. Carbon, 2002,40,2529.15 Dong G L, Hüttinger K J. Carbon, 2002, 40, 2515.16 Delhaes P. Carbon, 2002, 40, 641.
[1] 林欢, 寇爱静, 张建伦, 董华. 电流热退火效应对碳纤维导热性能的影响[J]. 材料导报, 2020, 34(14): 14198-14203.
[2] 樊凯, 卢雪峰, 吕凯明, 钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[3] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[4] 解惠贞,孙建涛,何轩宇,薛朋飞,秦淑颖. 密度对C/C复合材料热力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 268-271.
[5] 李妙玲,陈智勇,赵红霞. C/C复合材料的旋转偏振成像方法[J]. 《材料导报》期刊社, 2018, 32(10): 1678-1682.
[6] 牟楠, 卢静, 周海铭, 闵小兵, 罗丰华. 铸造Fe-C-B耐磨合金增韧研究与进展*[J]. 《材料导报》期刊社, 2017, 31(15): 68-74.
[7] 肖玲, 雷忠琦, 程文杰, 李明, 樊红卫, 刘刚, 孙岩桦, 虞烈. Fe基软磁复合材料的断裂性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 145-148.
[8] 丁冬海, 杨少雨, 肖国庆. 含碳耐火材料酚醛树脂结合剂的研究现状与展望*[J]. 《材料导报》期刊社, 2017, 31(11): 95-100.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed