Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4324-4328    https://doi.org/10.11896/j.issn.1005-023X.2018.24.021
  金属与金属基复合材料 |
B4C包覆ZTA颗粒增强铁基复合材料制备与性能
周谟金, 蒋业华, 卢德宏, 张孝足
昆明理工大学材料科学与工程学院,昆明 650093
Preparation and Properties of the ZTA Particles Cover with B4C Powder Reinforced Iron Matrix Composites
ZHOU Mojin, JIANG Yehua, LU Dehong, ZHANG Xiaozu
Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2592KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 ZTA (ZrO2增韧Al2O3)陶瓷颗粒表面包覆B4C微粉,将其制备成蜂窝状结构陶瓷预制体。采用传统重力浇注工艺将陶瓷预制体与熔融的高铬铸铁(HCCI)金属溶液进行复合,获得ZTA陶瓷颗粒增强高铬铸铁基复合材料。对复合材料中ZTA陶瓷颗粒增强相与高铬铸铁基体之间的界面及复合材料的耐磨料磨损性能进行了研究。结果表明,ZTA陶瓷颗粒与高铬铸铁界面结合处形成了明显的过渡区域,界面过渡区域的存在提高了陶瓷颗粒与金属基体的结合,从而提升了复合材料的整体稳定性能。同时,三体磨料磨损试验表明该复合材料的耐磨料磨损性能是高铬铸铁的3.5倍左右。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周谟金
蒋业华
卢德宏
张孝足
关键词:  复合材料  界面过渡区域  高铬铸铁  预制体  三体磨料磨损    
Abstract: The surface of the ZTA (ZrO2 toughened Al2O3) ceramic particles cover with B4C powder. The ceramic particles were prepared into a ceramic preform with honeycomb structure. The composites of ceramic particles reinforced high chromium cast iron matrix was fabricated by the molten HCCI casting infiltrate the preform. The interface between the ZTA ceramic particles and the high chromium cast iron were studied and the wear resistances of the composites were also studied. The results show that the interface transition zone was formed at the interface between the ZTA particles and the high chromium cast iron. The existence of the interface transition layer can improve the combination of the ceramic particles and metal matrix that improve the overall stability of the composites. At the same time, the three-body abrasive wear test shows that the wear resistance of the composites is higher than the high chromium cast iron about 3.5 times.
Key words:  composites    interface transition zone    high chromium cast iron    preform    three-body abrasive wear
                    发布日期:  2019-01-23
ZTFLH:  TB333  
  TG156.1  
基金资助: 国家自然科学基金(51571103)
通讯作者:  蒋业华:通信作者,男,1968年生,博士,教授,博士研究生导师,研究方向为磨损理论及耐磨材料 E-mail:1742944769@qq.com   
作者简介:  周谟金:男,1988年生,博士研究生,研究方向为磨损理论及耐磨材料 E-mail:631795569@qq.com
引用本文:    
周谟金, 蒋业华, 卢德宏, 张孝足. B4C包覆ZTA颗粒增强铁基复合材料制备与性能[J]. 材料导报, 2018, 32(24): 4324-4328.
ZHOU Mojin, JIANG Yehua, LU Dehong, ZHANG Xiaozu. Preparation and Properties of the ZTA Particles Cover with B4C Powder Reinforced Iron Matrix Composites. Materials Reports, 2018, 32(24): 4324-4328.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.021  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4324
1 鲁幼勤,许涛,汪贵生,等.节能降耗的有效途径之一——耐磨材料的合理选用[J].中国水泥,2008(1):74.
2 Konopka K,Olszówka-Myalska A,Szafran M. Ceramic-metal composites with an interpenetrating network[J].Materials Chemistry and Physics,2003,81(2-3):329.
3 Li Z, Jiang Y, Zhou R, et al. Dry three-body abrasive wear behavior of WC reinforced iron matrix surface composites produced by V-EPC infiltration casting process[J].Wear,2007,262(5):649.
4 Zheng Kaihong, Gao Yimin, Chen Liang, et al. Three-body abrasive wear behavior of iron matrix composites reinforced with tungsten carbide particles[J].Tribology,2012,32(2):176(in Chinese).
郑开宏,高义民,陈亮,等.颗粒增强铁基复合材料的三体磨料磨损性能[J].摩擦学学报,2012,32(2):176.
5 Wang Enze, Bao Chonggao, Xing Jiandong. Effects of particle coa-tings on abrasive resistance of alumina/heat-resistant steel matrix composite at high temperature[J].Journal of Xi’an Jiaotong University,2003,37(9):945(in Chinese).
王恩泽,鲍崇高,邢建东.涂层对氧化铝/耐热钢基复合材料磨料磨损性能的影响[J].西安交通大学学报,2003,37(9):945.
6 Bruhn J, Schicker S, GarcãD E, et al. Novel reaction-based proces-sing of co-continuous ceramic-metal composites[J].Key Engineering Materials,1996,127-131:73.
7 Zheng K, Gao Y, Li Y, et al. Three-body abrasive wear resistance of iron matrix composites reinforced with ceramic particles[J].Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,2014,228(1):3.
8 Zhou Mojin, Jiang Yehua, Wen Fangfang, et al. Effect of heat treatment on wear resistance of honeycomb ceramic preform reinforced chromium cast iron matrix composite[J].Materials Review B:Research Papers,2017,31(7):117(in Chinese).
周谟金,蒋业华,温放放,等.热处理对高铬铸铁基蜂窝陶瓷复合材料耐磨性的影响[J].材料导报:研究篇,2017,31(7):117.
9 Dong Zhen, Chen Sanyuan, Han Yanfeng. Effect of melting techno-logy on performance of high Cr cast iron[J].China Foundry Machi-nery & Technology,2002(3):17(in Chinese).
董振,陈三元,韩延峰.熔炼工艺对高铬铸铁性能的影响[J].中国铸造装备与技术,2002(3):17.
10 郝石坚.铬白口铸铁及其生产技术[M].北京:冶金工业出版社,2011.
11 Gao Caiqiao. The relationship between hardness and wear resistance of the metal[J].Mechanical Engineering,1981(4):6(in Chinese).
高彩桥.金属的硬度与耐磨性的关系[J].机械工程师,1981(4):6.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[11] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[12] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[13] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[14] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[15] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed