Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 444-453    https://doi.org/10.11896/cldb.201903011
  无机非金属及其复合材料 |
减摩耐磨多层膜设计及研究进展
郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟
河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室,洛阳 471003
A Review on Design and Research Progress of Antifriction and Wear-ResistantMultilayer Coatings
ZHENG Xiaomeng, ZHANG Yongzhen, DU Sanming, LIU Jian, YANG Zhenghai, PANG Xianjuan
National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471003
下载:  全 文 ( PDF ) ( 2487KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 涂层作为一种有效的表面改性技术,具有材料选择范围广、性能可调节性好的优点,适用于多种工况和结构要求,在零部件的减摩耐磨中得到了广泛的应用。传统的单一涂层分为减摩涂层和耐磨涂层两类。前者采用类石墨层状结构润滑材料制备,用于减小摩擦副的摩擦系数,但磨损率较高;后者则采用陶瓷等高硬材料制备,用于抵抗磨损、保护基体材料,但摩擦系数较大。这两种涂层在使用中都不能同时发挥减摩、耐磨的作用。随着机械、航天等领域的不断发展,在不能采用传统油润滑的特殊环境中,传统涂层无法同时满足零部件之间较小的摩擦系数和较低的磨损率的要求。而多层膜结合选材和层状结构设计,兼具减摩、耐磨作用,其相关研究为解决材料摩擦学性能不足这一关键问题提供了可能。
构筑多层膜的基本原理是采用磁控溅射等手段,在基体材料上制备软硬交替分布的层状结构涂层,单层厚度在微米和纳米级之间。其摩擦学性能取决于自身的结构参数和制备工艺参数,二者通过改变多层膜的结晶状态、力学性能进而影响其摩擦学性能。如何优化结构、工艺参数以获得最佳的减摩耐磨性能是目前亟待解决的主要问题,相关研究集中在三个方面:一是控制多层膜的晶粒生长和晶体择优取向;二是提高多层膜的韧性;三是降低多层膜的残余应力。通过优化结构、工艺参数,控制制备过程中的不良因素,强化有利因素,多层膜的摩擦学性能得到了进一步提升。
研究表明,调整多层膜中的单层膜厚度可以实现内部材料结晶状态的演变及抑制晶体取向的转变。另外,多层膜层状结构产生的大量界面可以在涂层受载产生裂纹时吸收能量,抑制或偏转裂纹扩展,因此可以通过引入高质量层间界面优化其韧性。多层膜制备过程中产生的残余应力随溅射过程逐渐累积,降低基片偏压是控制残余应力的有效手段;多层膜的层状结构可以打断残余应力的累积,也能从时间效应上控制残余应力。从研究成果来看,影响多层膜摩擦学性能的因素存在最佳值。从实验数据来看,大气环境中干摩擦磨损率可以降至3×10-10 mm3/(N·m),并且摩擦系数始终稳定在0.1左右。
本文归纳了多层膜的研究现状,主要从设计原则(包括影响因素和控制方法)、性能表征和检测手段、近期研究成果三个方面进行阐述和分析。指出目前多层膜研究中面临的问题,并对未来的研究方向进行展望,以期为相关学者提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑晓猛
张永振
杜三明
刘建
杨正海
逄显娟
关键词:  多层膜  力学性能  摩擦学  调制周期  韧性  残余应力    
Abstract: Coating is considered to be an effective surface modification technology by virtue of its wide material selection range and fine property adjus-tability, which is suitable for various working conditions and structural requirements, thus having found wide application in antifriction and wear-resistance of machine parts. Traditional single coating can be classified into anti-friction coating and wear-resistant coating. The former was prepared by graphite-like layer-structured lubricating materials that can reduce the friction coefficient of the friction pair but behave badly in the wear rate, whereas the properties of the latter prepared by high-hardness materials such as ceramics are completely adverse to the former’s. Hence neither of them can be effective in both friction reduction and wear resistance. With the continuous development of the machinery and aerospace, traditional coatings cannot attain the requirement of low friction coefficients and low wear rates under specific environments where traditio-nal lubricating oil is unavailable. Multilayer coatings ensure both lubrication and wear-resistance with proper material selection and layered structure design, and relevant researches offer significant insights in solving the critical issue of the inferior tribological properties of materials.
The basic principle of designing the multilayer coatings is to prepare layer structured coatings with alternating soft and hard layers on the substrate via magnetron sputtering or the others, and the thickness of a monolayer is at micron and nanometer scale. The tribological properties of multilayer coatings depend on its own structural parameters and preparation process parameters. These two factors take effect by changing the crystalline state and mechanical properties of multilayer coatings. The current problem demanding prompt solution is to acquire the best tribological properties of friction reduction and wear resistance by optimizing structural parameters and technological parameters. Specifically, the following three aspects are the focus of current researches: The first is to control the grain growth and crystal orientation of multilayer coatings, the second is to improve the toughness of multilayer coatings and the third is to reduce the residual stress of multilayer coatings. Further improvement on tribological properties of multilayer coatings has been achieved by optimizing the structural and technological parameters which enables inhibited unfavorable factors and strengthened favorable factors.
Sufficient investigations indicate that adjusting the thickness of monolayer in multilayer coatings can realize the evolution of crystalline state, and suppress the transformation of the crystal orientation. In addition, number of interfaces produced by the layered structure of multilayer coatings can absorb energy and inhibit or deflect crack propagation when the multilayer coatings are loaded with cracks. Therefore, the toughness of coatings can be optimized through introducing a high quality interface. Reducing the substrate bias is an effective method to control residual stress generated during coating preparation, and the accumulation of residual stress can be interrupted by layered structure of the multilayer coatings along sputtering process. According to the research results, there are optimal values for the factors affecting the tribological properties of multilayer coa-tings. Experimental datas reveal that the wear rate of dry friction in the atmospheric environment can be lowered to 3×10-10 mm3/(N·m), and the friction coefficient remains stable around 0.1.
This paper summarizes the research status with respect to multilayer coatings, and mainly analyzes from three aspects: design principles (including influence factors and control methods), performance characterization and detection methods, and recent research outputs. We then pay attention to the inadequacy of previous researches and the prospective research directions in the future, and expect our review to provide refe-rences for relevant scholars.
Key words:  multilayer coatings    mechanical properties    tribology    modulation period    toughness    residual stress
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TH117  
  TB43  
基金资助: 国家自然科学基金(U1730130;U1404504);河南省自然科学基金(162300410091)
作者简介:  郑晓猛,2010年、2013年先后获得吉林大学工学学士和工学硕士学位。2013年至2017年就职于中信重工机械股份有限公司,从事机械设计。目前就读于河南科技大学,师从张永振教授,从事材料摩擦学方面的研究。张永振,博士,教授,博士研究生导师,中原学者,河南省特聘教授。yzzhang@haust.edu.cn
引用本文:    
郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟. 减摩耐磨多层膜设计及研究进展[J]. 材料导报, 2019, 33(3): 444-453.
ZHENG Xiaomeng, ZHANG Yongzhen, DU Sanming, LIU Jian, YANG Zhenghai, PANG Xianjuan. A Review on Design and Research Progress of Antifriction and Wear-ResistantMultilayer Coatings. Materials Reports, 2019, 33(3): 444-453.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903011  或          http://www.mater-rep.com/CN/Y2019/V33/I3/444
1 Sun J R. Preparing and tribological properties of Ni-W-Cr series high temperature self-lubricating composites and its bearing. Ph.D. Thesis, Jiansu University,China,2014(in Chinese).
孙建荣.Ni-W-Cr系列高温自润滑复合材料及其轴承的制备与摩擦学特性.博士学位论文,江苏大学,2014.
2 Moser J, Lévy F. Journal of Materials Research,1992,7,734.
3 Yi M, Zhang C. Tribology International,2017,116,285.
4 Xu S, et al. Surface and Coatings Technology,2017,325,81.
5 Xu S, Gao X, Hua M, et al. Applied Surface Science,2014,288,15.
6 Penkov O, Kim H, Kim H, et al. International Journal of Precision Engineering and Manufactuing,2014,15(3),577.
7 Kim H J, Shin D G, Kim D. International Journal of Precision Enginee-ring and Manufacturing-Green Technology,2016,3(1),91.
8 Jansson U, Lewin E. Thin Solid Films,2013,536,1.
9 Zhang K. Investigation on the microstructure, mechanical properties and tribological benavior for NbN and NbC-based thin films. Ph.D. Thesis, Jilin University,China,2014(in Chinese).
张侃.NbC和NbN基薄膜的微观结构、力学性能和摩擦学行为的研究.博士学位论文,吉林大学,2014.
10 Khadem M, Penkov O V, Yang H, et al. Friction,2017,5(3),248.
11 Penkov O V, Devizenko A Y, Khadem M, et al. ACS Applied Materials and Interfaces,2015,7(32),18136.
12 Nemati N, Bozorg M, Penkov O V, et al. ACS Applied Materials and Interfaces,2017,9,30149.
13 Li L, Guo P, Liu L, et al. Journal of Materials Science & Technology,2017,DOI:10.1016/j.jmst.2017.12.002.
14 Lin Y, et al. Surface and Coatings Technology,2017,320(25),7.
15 Lin Y, Zhou Z, Li K Y. Applied Surface Science,2017,DOI:10.1016/j.apsusc.2017.11.118.
16 Liu L Q, Wang Z S, et al. Chinese Optics Letters,2008,6(5),384.
17 Du S, Zhang K, Wen M, et al. Ceramics International,2018,44,613.
18 Gong H F, Shao T M. Journal of Materials Engineering,2009(10),26(in Chinese).
龚海飞,邵天敏.材料工程,2009(10),26.
19 Holleck H. Journal of Vacuum Science and Technology A,1986,4,2661.
20 Holleck H, Schier V. Surface and Coatings Technology,1995,76-77,328.
21 Kulka M, Makuch N, Dziarski P, et al. Optics and Lasers in Enginee-ring,2015,67,163.
22 Tayal M, et al. Journal of Materials Science,1994,29(21),5699.
23 Kulka M, et al. Optics and Laser Technology,2013,45,308.
24 Ge F, Zhou X, Meng F, et al. Tribology International,2016,99,140.
25 Bai W Q, Cai J B, et al. Thin Solid Films,2014,558(19),176.
26 Piasecki A, Kotkowiak M, Kulka M. Wear,2017,376-377,993.
27 Piasecki A, et al. Tribology International,2016,97,173.
28 Aisenberg S, Chabot R. Journal of Applied Physics,1971,42,2953.
29 Spencer E G, Schmidt P H, Joy D C, et al. Applied Physics Letters,1976,29,118.
30 Li F, Zhang S, Kong J, et al. Thin Solid Films,2011,519,4910.
31 Park S T, Han J G, Keunecke M, et al. International Journal of Refractory Metals and Hard Materials,2016,65,52.
32 Song L, Ci L J, Lu H, et al. Nano Letters,2010,10,3209.
33 Kumari S, Sharma O P, Gusain R, et al. ACS Applied Materials and Interfaces,2015,7(6),3708.
34 Meng W, Huang Y, Fu Y, et al. Journal of Materials Chemistry C,2014,2(47),10049.
35 Pakdel A, et al. Chemical Society Reviews,2014,43(3),934.
36 Matthews A, Leyland A, Holmberg K, et al. Surface and Coatings Technology,1998,100-101,1.
37 Cavaleiro A, Hosson J T M D. Nanostructured Coatings, Springer Press, Germany,2006.
38 Holmberg K, Matthews A. Properties, Mechanisms, Techniques and Applications in Surface Engineering, Elsevier Press, Netherlands,2009.
39 Holmberg K, Matthews A, Ronkainen H. Tribology International,1998,31(1-3),107.
40 Kim H, Kim D. Applied Physics Letters,2013,103,151904.
41 Azadi M, Rouhaghdam A S, Ahangarani S, et al. Surface and Coatings Technology,2014,245,156.
42 Lehoczky S L. Physical Review Letters,1978,41(26),1814.
43 Hall E O. Proceedings of the Physical Society,1951,64,747.
44 Postolnyi B O, Beresnev V M, Abadias G, et al. Journal of Alloys and Compounds,2017,725,1188.
45 Helmersson U, Todorova S, Barnett S A, et al. Journal of Applied Phy-sics,1987,62(2),481.
46 Zhang S, Sun D, Fu Y, et al. Surface and Coatings Technology,2003,167(2-3),113.
47 Conrad H, Narayan J. Scripta Materialia,2000,42(11),1025.
48 Schiøtz J, Di Tolla F D, Jacobsen K W. Nature,1998,391(6667),561.
49 Carlton C E, Ferreira P J. Acta Materialia,2007,55(11),3749.
50 Ruud J A, Jervis T R, Spaepen F. Journal of Applied Physics,1994,75,4969.
51 Zubarev E N, Devizenko A Y, Penkov O V, et al. Thin Solid Films,2017,622,84.
52 Lin S S. Preparation, structure and properties of Ti-Ti N-Zr-ZrN anti sand erosion multilayer films. Ph.D. Thesis, South China University of Technology,China,2016(in Chinese).
林松盛.Ti-TiN-Zr-ZrN抗冲蚀多层膜的制备、结构及性能.博士学位论文,华南理工大学,2016.
53 Yang F E, Lu Y, Li A, et al. Tribology,2017,37(3),387(in Chinese).
杨芳儿,鲁叶,李昂,等.摩擦学学报,2017,37(3),387.
54 Yang F E, Lu Y, Zhang R, et al. Surface and Coatings Technology,2017,309,187.
55 Hilton M R, Bauer R, Didziulis S V, et al. Surface and Coatings Technology,1992,53(1),13.
56 Li H, Xie M, Zhang G, et al. Applied Surface Science,2018,435,48.
57 Ivashchenko V, Veprek S, Pogrebnjak A, et al. Science and Technology of Advanced Materials,2014,15(2),2500701.
58 Leyland A, Matthews A. Wear,2000,246(1-2),1.
59 Shahsavari F, Ehteshamzadeh M, Naimi-Jamal M R, et al. Diamond & Related Materials,2016,70,76.
60 Modabberasl A, Kameli P, Ranjbar M, et al. Carbon,2015,94,485.
61 Charitidis C A, Koumoulos E P, et al. Lubricants,2013,1(2),22.
62 Charitidis C A. International Journal of Refractory Metals and Hard Materials,2010,28(1),51.
63 Shi B, Sullivan J L, Beake B D. Journal of Physics D: Applied Physics,2008,41(4),45303.
64 Zhang J, Yu X, Zhao X A, et al. The Journal of Physical Chemistry C,2017,121(12),6781.
65 Du J, Zhu X Y, Wang H M. Journal of Materials Engineering,2017(8),102(in Chinese).
杜军,朱晓莹,王红美.材料工程,2017(8),102.
66 Cai J B, Wang X L, Bai W Q, et al. Surface and Coatings Technology,2013,232(10),403.
67 Neuville S. Journal of Solids and Structures,2009,3(1),33.
68 Neuville S. Surface and Coatings Technology,2011,206,703.
69 Zhang S, Bui X L, Zeng X T, et al. Thin Solid Films,2005,482,138.
70 Jin Q L, Wang H D, Li G L, et al. Rare Metal Materials and Enginee-ring,2017,10,2857
71 Zhang S, et al. Surface and Coatings Technology,2003,167,137.
72 He T F, Wu Y Z, Xu J, et al. Tribology,2017(1),35(in Chinese).
贺腾飞,吴有智,许佼,等.摩擦学学报,2017(1),35.
73 Peng Y, Zhang Y J, Zhai Y H, et al. Tribology,2015(2),190(in Chinese).
彭燚,张玉娟,翟玉浩,等.摩擦学学报,2015(2),190.
74 Gayathri S, Krishnan R, Ravindran T R, et al. Materials Research Bulletin,2012,47,843.
75 Shahsavari F, Ehteshamzadeh M, Eslami P, et al. Studia Universitatis Babes-Bolyai Chemia,2016,61(1),107.
76 Fan D, Lei H, Guo C Q, et al. Surface Technology,2017(6),156(in Chinese).
范迪,雷浩,郭朝乾,等.表面技术,2017(6),156.
77 Hovsepian P E, Lewis D B, Constable C, et al. Surface and Coatings Technology,2003,174(3),762.
78 Sui X, Liu J, Zhang S, et al. Applied Surface Science,2018,439(1),24.
79 Yang S, et al. Surface and Coatings Technology,2000,131(1-3),412.
80 Li M, Wen S Z. China Mechanical Engineering,2002,13(16),1437(in Chinese).
黎明,温诗铸.中国机械工程,2002,13(16),1437.
81 Oliver W C, et al. Journal of Materials Research,1992,7(6),1564.
82 Zhang X L. Finite element analysis on the influence of film thickness on nanoindentation behavior. Master’s thesis, Harbin Institute of Technology,China,2005(in Chinese).
张晓玲.薄膜厚度对其纳米压痕行为影响的有限元分析.硕士学位论文,哈尔滨工业大学,2005.
83 He J L, Li W Z, Li H D. Applied Physics Letters,1996,69(10),1402.
84 Liu L, Wu Z, et al. Surface and Coatings Technology,2017,331,15.
85 Vidakis N, Antoniadis A, Bilalis N. Journal of Materials Processing Technology,2003,143-144,481.
86 Laconte J, Iker F, et al. Microelectronic Engineering,2004,76,219.
87 Townsend P H, Barnett D M, Brunner T A. Journal of Applied Physics,1987,62(11),4438.
88 Mao W G, Yang P, Dai C Y, et al. Materials Review A: Review Papers,2017(7),1(in Chinese).
毛卫国,杨鹏,戴翠英,等.材料导报:综述篇,2017(7),1.
89 Chen J. Journal of Physics D Applied Physics,2012,45(20),203001.
90 Penkov O V, Bugayev Y A, Tribology Letters,2012,48,123.
91 Wu Y, et al. Surface and Coatings Technology,2013,236,438.
92 Wang T, et al. Journal of Alloys and Compounds,2017,729,942.
93 Stallard J, Mercs D, Jarratt M, et al. Surface and Coatings Technology,2004,177-178,545.
94 Tytko D, Choi P, Raabe D. Acta Materialia,2015,85,32.
95 Li Q, et al. Journal of Materials Research,2002,17,1224.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed