Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 438-443    https://doi.org/10.11896/cldb.201903010
  无机非金属及其复合材料 |
MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述
周超, 李得天, 周晖, 张凯锋, 曹生珠
兰州空间技术物理研究所真空技术与物理重点实验室,兰州 730000
Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview
ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu
Lanzhou Institute of Physics, Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou 730000
下载:  全 文 ( PDF ) ( 2752KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 MEMS器件是机械电子系统未来的发展趋势。许多MEMS器件需要进行真空封装,从最大程度地减少残余气体,且真空封装水平的高低决定了器件的性能优劣甚至决定器件能否正常工作。常规的MEMS器件封装是在真空腔内放置块体吸气剂,占空间且容易产生微小颗粒污染。在器件的真空腔室内镀上吸气剂薄膜,吸气剂薄膜在器件高温键合的同时被激活,就可在后期维持真空腔内的真空度。非蒸散型吸气剂薄膜激活后在室温下即具有优异的吸气性能,应用于MEMS器件真空封装可以提高器件的寿命和可靠性。目前,提高非蒸散型吸气剂薄膜的吸气性能,降低其激活温度是国内外研究的焦点。
本文简要介绍了非蒸散型吸气剂薄膜的吸气原理,从膜系材料和制备技术两方面分析了国内外研究现状。在膜材料方面,目前采用ⅣB族+ⅤB族组合的三元合金作为非蒸散型吸气剂薄膜的膜系材料。另外,在材料中掺入Fe、稀土元素等进行薄膜结构的修饰也是较常用的手段。值得指出的是,TiZrV合金薄膜是兼具较好的吸气性能和最低激活温度的非蒸散型吸气剂(NEG)薄膜。在制备技术方面,MEMS器件用非蒸散型吸气剂薄膜一般采用磁控溅射镀膜,磁控溅射镀膜工艺的关键是制备出柱状的纳米晶结构,该结构存在大量的晶界,可促进原子的扩散,降低激活温度。磁控溅射镀膜工艺的研究围绕靶材选择、基片温度、溅射电压、溅射气氛等。探索综合性能更优的新型材料体系和增大薄膜的比表面积仍然是目前非蒸散型吸气剂薄膜研究的关键。本文最后对非蒸散型吸气剂薄膜的研究趋势进行了展望,指出加入调节层的双层膜的激活性能和吸气性能优于单层膜,但调控机理有待明确,今后可以在TiZrV薄膜研究的基础上进一步进行双层薄膜的研究,也可横向拓展进行新型薄膜体系,如ZrCoRE等新型合金薄膜的研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周超
李得天
周晖
张凯锋
曹生珠
关键词:  MEMS真空封装  非蒸散型吸气剂薄膜  吸气机理  TiZrV薄膜  磁控溅射    
Abstract: Micro-electro-mechanical system (MEMS) device is the developing goal of the electro-mechanical system in future. Vacuum packaging is ne-cessary for MEMS devices in most cases to minimize the residual gas. The quality of vacuum packaging affects the performance of MEMS devices even determine whether the device can work properly. The conventional packaging of MEMS device is conducted with bulk getters placed in vacuum cavity, which occupy valuable space and may produce tiny particle contamination in the cavity. While if a getter film is deposited in the cavity of the device, and the getter film can be activated when the device is bonded at high temperature, thus the vacuum degree of the cavity can be maintained. Particularly, non-evaporable getter films present excellent property at room temperature after thermal activation. The application of non-evaporable getter films in vacuum packaging of MEMS would contribute to extending the lifetime and improving reliability of MEMS. Currently, the research focus of non-evaporable getter films lies in improving the getter performance and reducing the activation temperature.
In this article, mechanism of non-evaporable getter films is briefly introduced, and the research status at home and abroad is analyzed in terms of film materials and preparation techniques. In regard of film materials, the ternary alloys composed by IVB&VB element are usually used as film materials of non-evaporable getter. Besides, Doping Fe or rare-earth element in the alloy is a commonly adopted method to modify the film structure. It is worth mentioning that TiZrV is the best film material for non-evaporable getter, showing excellent getter property and the lowest activation temperature. The non-evaporable getter films for MEMS use usually were deposited by magnetron sputtering. In regard of preparation techniques, non-evapotranspiration getter films used in MEMS devices are generally prepared by magnetron sputtering. The objective of magnetron sputtering is to obtain the columnar and nano crystal structure, whose numerous grain boundary in the structure can promote the diffusion of atoms and reduce the activation temperature. The study of magnetron sputtering revolves around target selection, substrate temperature, sputtering voltage, sputtering gas. The key for the research of non-evapotranspiration getter films still lies exploring novel materials with better property and increasing the specific area of the films. Finally, promising research directions of non-evaporable getter films are predicted. It is pointed out that the bilayer films with adjusting layer exhibit better property than single layer, but the adjusting mechanism needs to be clarified. The future research can be carried out on the basis of the study of the TiZrV thin film. Furthermore, it is also possible to develop new film materials, like ZrCoRE and other new alloy films.
Key words:  MEMS vacuum packaging    non-evaporable getter films    adsorption mechanism    TiZrV film    magnetron sputtering
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TB43  
基金资助: 国家自然科学基金国家重大科研仪器研制项目(61627805)
作者简介:  周超,2013年1月毕业于天津大学,获得工学硕士学位。现为兰州空间技术物理研究所博士研究生,在李得天研究员的指导下进行研究。目前主要研究领域为真空物理、薄膜技术。李得天,研究员,博士生导师。从事真空计量研究。lidetian@hotmail.com
引用本文:    
周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview. Materials Reports, 2019, 33(3): 438-443.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903010  或          http://www.mater-rep.com/CN/Y2019/V33/I3/438
1 Nguyen C. IEEE Transacations on Ultrason Ferroelectric Frequent Control,2007,54,251
2 Gad-el-Hak M. The MEMS handbook, Chemical Rubber Company Press, USA,2002.
3 Hacker J B, Mihailovich R E, Kim M A. IEEE Transacations on Microwave Therory and Techniques,2003,51,305
4 Menz W, Mohr J, Paul O. Microsystem Technolog, Wiley-VCH Press, Germany,2001.
5 Senturia S D. Microsystem Design, Springer Press, USA,2000.
6 Gale B K, Eddings M A, Sundberg S O. Comprehensive Microsystems,El-sevier Science Press, Holland,2008.
7 Jin Y F, Wang Z F, Zhao L,et al. Journal of Microelectromechanical Systems,2004,14,687.
8 Bu J G, Mao C H, Zhang Y, et al. Chinese Journal of Vacuum Science and Technology,2012,32(4),341(in Chinese).
卜继国,毛昌辉,张艳,等.真空科学与技术学报,2012,32(4),341.
9 Ramesham R. Journal of Micro-Nanolithography Mems and Moems,2009,8,31307.
10 Górecka-Drzazga A. Vacuum,2009,3,1419.
11 Choa S H. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing System,2005,11,1187.
12 Lee B, Seok S.Journal of Microelectromechanical Systems,2003,13,663.
13 Höerz G. Gases and carbon in metals: thermodynamics, kinetics, and properties. Group VA metals (1), vanadium (V), Cheminform Press, Germany,1981.
14 Totemeier T C, Smithells C J. Smithells metals reference book, Butterworth-Heinemann Press, USA,2004.
15 Lide D R, Kehiaian H V.CRC Handbook of hermophysical and thermochemical data, Chemical Rubber Company Press, USA,1994.
16 Höerz G. Gases and carbon in metals: thermodynamics, kinetics, and properties. Group VA metals (3), tantalum (Ta), Cheminform Press, Germany,1981.
17 Bornstein L. New series. Group IV, Vol. 5, Springer-Verlag Press, USA,1990.
18 Baker H, Okamoto H.Alloy Phase Diagrams, ASM Handbook. Vol.3, ASM International Press, UK,1992.
19 Waldner P.Scripta Materialia,1999,40(8),969
20 Della P P. In: Proceedings of the Second International Vacuum Congress and Eighth National American Vacuum Society Symposium. Pergamon, New York,1962,pp.229.
21 Benvenuti C, Cazeneuve J M. Vacuum,1999,53,219.
22 Henrist B, Hilleret N. Applied Surface Science,2001,172,95.
23 Benvenuti C, Santana A E, Ruzinov V. Vacuum,2001,60,279.
24 Benvenuti C, Chiggiato P, Pinto P C, et al. Vacuum,2001,60,57.
25 Chiggiato P, Pinto P C.Thin Solid Films,2006,515,382.
26 Ferreira M J, Seraphim R M, Ramirez A J, et al. Physics Procedia,2012,32,840.
27 Malyshev O B, Valizadeh R, Hannah A N. Vacuum,2014,100,26.
28 Malyshev O B, Valizadeh R, Jones R M A, et al. Vacuum,2012,86,2035.
29 Petti D, Cantoni M, Leone M,et al. Applied Surface Science,2010,256,6291.
30 Rivoire M, Ouahmance H, Suran G . IEEE Transactions on Magnetics,1993,29,3487.
31 Wu M, Moulin J,Lani S, et al. Japanese Journal of Applied Physics,2015,54,030220.
32 Vivek C, Xie L, Chen B. Journal of Electronic Materials,2013,42,485.
33 Tenchine L, Baillin X, Faure C, et al. Sensors and Actuators A,2011,172,233.
34 Benvenuti C, Chiggiato P, Cicoira F. Vacuum,2004,73,139.
35 Mura M, Paolini C. Journal of Vacuum Science & Technology A,2007,25,1234.
36 Vivek C, Xie L, Chen B. Journal of Electronic Materials,2013,42,485.
37 Li C C, Huang J L, Lin R J, et al. Journal of Vacuum Science & Techno-logy A,2007,25,1373.
38 Tang G R. Wafer level vacuum packaging MEMS device structure design and process integration of the whole process. Master’s thesis, Huazhong University of Science and Technology, China,2011(in Chinese).
唐敢然.MEMS晶圆级真空封装结构设计与工艺集成.硕士学位论文,华中科技大学,2011.
39 http://www.saesgetters.com/default.aspx?idPage=1476.
40 Benvenuti C, Chiggiato P, Costa Pinto P, et al. Vacuum,2003,71,307.
41 Conte A, Moraja M. U.S. patent, US7413841,2008.
42 Li C C, Huang J L, Lin R J, et al. Thin Solid Films,2009,517,5876.
43 Li C C, Huang J L, Lin R J, et al. Surface & Coatings Technology,2005,200,1351.
44 Li C C, Huang J L, Lin R J, et al. Surface & Coatings Technology,2006,201,3977.
45 Bu J G,Mao C H,Zhang Y, et al. Rare Metal Materials and Engineering,2013,42(9),1889(in Chinese).
卜继国,毛昌辉,张艳,等.稀有金属材料与工程,2013,42(9),1889.
46 Bu J G,Mao C H,Zhang Y, et al. Chinese Journal of Rare Metals,2012,36(5),757(in Chinese).
卜继国,毛昌辉,张艳,等.稀有金属,2012,36(5),757.
47 Tian S F, Mao C H, Zhang X Q, et al. Journal of Functional Materials,2013,44(21),3208(in Chinese).
田士法,毛昌辉,张心强,等.功能材料,2013,44(21),3208.
48 Bu J G, Mao C H, Zhang Y, et al. Journal of Alloys and Compounds,2012,529,69.
[1] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[2] 孙科学, 常月欣, 成谢锋. xBiInO3-(1-x)PbTiO3薄膜的横向压电特性[J]. 材料导报, 2019, 33(14): 2299-2304.
[3] 白园蕊, 马建中, 刘俊莉, 鲍艳, 崔万照, 胡天存, 吴朵朵. 基于胶体晶体构筑银纳米薄膜及其抑制微放电性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 515-519.
[4] 刘涛, 马垒, 赵世谦, 马冬冬, 李林, 成钢. 沉积厚度对L10-FePd颗粒膜结构和磁性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 525-527.
[5] 贺凯, 陈诺夫, 魏立帅, 王从杰, 陈吉堃. 退火对铝诱导结晶锗薄膜的影响及其机理[J]. 材料导报, 2018, 32(15): 2571-2575.
[6] 康淮,陆轴,钟志有,龙浩. 磁控溅射制备镁镓共掺氧化锌透明半导体薄膜及其性能研究[J]. 《材料导报》期刊社, 2018, 32(11): 1938-1942.
[7] 李家节, 郭诚君, 周头军, 饶先发, 周慧杰, 杨斌. 烧结钕铁硼磁体溅射渗镝工艺与磁性能研究*[J]. 《材料导报》期刊社, 2017, 31(4): 17-20.
[8] 房迪, 肖清泉, 廖杨芳, 袁正兵, 王善兰, 吴宏仙. 钠钙玻璃上Mg2Si薄膜的制备及其电学性质*[J]. 《材料导报》期刊社, 2017, 31(4): 9-13.
[9] 陈亚军, 郁佳琪, 赵婕宇, 王付胜. 磁控溅射高温固体自润滑涂层的研究与进展*[J]. 《材料导报》期刊社, 2017, 31(3): 32-37.
[10] 高正源, 胡琳盛, 刘 浪, 任 毅, 李辉君. 从工艺参数角度探讨AZ系镁合金表面磁控溅射单层铝及氧化铝膜的耐腐蚀和耐磨损性能[J]. 材料导报, 2017, 31(1): 90-96.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed