Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24107-24112    https://doi.org/10.11896/cldb.20110154
  金属与金属基复合材料 |
多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析
黄伟玲1, 陈晶晶2
1 赣南科技学院机电工程系,赣州 341000
2 宁德师范学院信息与机电工程学院,宁德 352100
Atomic Mechanism of Plastic Deformation for Poly-crystalline CoNiCrFeMn High Entropy Alloy
HUANG Weiling1, CHEN Jingjing2
1 Mechanical and Electrical Engineering Department, Gannan University of Science and Technology, Ganzhou 341000, China
2 School of Physics and Electrical Engineering, Ningde Normal University, Ningde 352100, China
下载:  全 文 ( PDF ) ( 7468KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CoNiCrFeMn高熵合金因具高强韧性、耐磨损与抗蚀性、抗高温、耐超低温等优异性能,在深海破冰探测、超音速发动机、空天超声电机等重大应用领域可发挥重要作用。若能了解多晶CoNiCrFeMn高熵合金的微观演化特性,将推动其应用发展。因此,基于经典力学的分子动力学法,对纳米压痕诱导多晶CoNiCrFeMn高熵合金的载荷与压深曲线相对应的微结构动态演化特性进行研究,揭示出多晶CoNiCrFeMn高熵合金受载诱导的位错运动特性。研究表明,多晶CoNiCrFeMn高熵合金步入塑性变形阶段时,会出现无定型非晶化并产生位错堆垛形核,且两者均随压深增加而逐渐增多。此外,因载荷诱导产生的应力集中易导致紧密接触区晶粒内的位错发生滑移,而晶界对位错滑移起阻碍作用。随着压深持续增加,非晶化一旦到达晶界处就不再继续,而是以位错发射形式在相邻晶粒中释放应力,此时晶界成为位错发射源。研究表明:在弹性阶段,当温度低于300 K时,载荷与压深对温度不敏感;而在塑性阶段,随温度升高,载荷大幅下降。另外,温度升高易诱导多晶CoNiCrFeMn高熵合金上表面起伏程度加剧,但紧密接触边缘两侧起伏程度呈现非均匀性。本研究给出了受载响应的多晶CoNiCrFeMn高熵合金内部微结构的动态演变进程,对理解多晶CoNiCrFeMn高熵合金塑性变形机制有着重要的学术参考意义,也对后期设计具有优异力学性能的多晶CoNiCrFeMn高熵合金微结构起到重要的推动作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄伟玲
陈晶晶
关键词:  CoNiCrFeMn  高熵合金  纳米压痕  分子动力学  塑性变形    
Abstract: CoNiCrFeMn high-entropy alloy plays an extremely significant role in national major fields such as deep-sea detection in lower temperature, supersonic engine and space ultrasonic motor due to its excellent properties of high strength and toughness, wear resistance, corrosion resistance, high temperature softening and low temperature resistance. Therefore, it is of great significance to research its evolution process of plastic deformation. This work focused on the basic research of the correlation characteristic for CoNiCrFeMn high-entropy alloy between load versus depth curve and micro-structural evolution, and the mechanism features of its plastic defor-mation was revealed. It was noted that the amorphous phase transition and dislocation nucleation appeared simultaneously after elastic deformation, and then increase gradually as indentation depth increases. Furthermore, an interesting phenomenon of dislocation slip can be discovered in grain, which was expected to the stress concentration induced from local contact area. At the same time, the grain boundary prevents dislocation slip. As amorphous phase transition reached the grain boundary, it will not continue. Instead, the local stress concentration was released in adjacent grains with a form of dislocation emission, so that the grain boundary becomes the source of dislocation emission. On the other hand, this report showed that the load versus depth curve during elastic stage was not sensitive to temperature changes at room temperature 300 K or below, while the load at plastic stage decreases gradually with temperature increasing. Moreover, the fluctuation degree on upper surface of poly-crystalline high-entropy alloy became serious and presented heterogeneity on the both sides of local contact area due to increasing temperature. This research will provide insight on response of the micro-structure evolution induced by loading for poly-crystalline high-entropy alloy at atomic scale, which shows an important academic value on deep exploration into the plastic deformation mechanism for poly-crystalline high-entropy alloys, and provides a reference value on improving their structure and mechanical properties.
Key words:  CoNiCrFeMn    high entropy alloy    nano-indentation    molecular dynamics    plastic deformation
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TG146.21  
  TB383.1  
基金资助: 江西省教育厅科技计划课题(GJJ209402);福建省自然科学基金(2017J01709;2018J01509);宁德师范学院重大科研培育项目 (2017ZDK19)
通讯作者:  chenjingjingfzu@126.com   
作者简介:  黄伟玲,赣南科技学院讲师,江西石城人,硕士。目前主要研究方向为机械表/界面微观接触变形行为。陈晶晶,宁德师范学院讲师,2015年于福州大学机械学院获得硕士学位。目前主要研究方向为机械表界面摩擦磨损与防护润滑。
引用本文:    
黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
HUANG Weiling, CHEN Jingjing. Atomic Mechanism of Plastic Deformation for Poly-crystalline CoNiCrFeMn High Entropy Alloy. Materials Reports, 2021, 35(24): 24107-24112.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110154  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24107
1 Li C, Xue Y, Hua M, et al. Material & Design, 2016, 90(9),601.
2 Wang F J, Zhang Y, Chen G L. Journal of Alloys and Compounds, 2009, 478(1),321.
3 Song H, Tian F, Hu Q M, et al. Physical Review Materials, 2017, 1(2),023404.
4 Sun S J, Tian Y Z, Lin H R, et al. Material Science Engineering A, 2018, 712(1),603.
5 Juan C C, Tsai M H, Tsai C W, et al. Material Letters, 2016, 184(1),200.
6 Seol J B, Bae J W, Li Z, et al. Acta Materialia, 2018, 151(1),366.
7 Li J, Fang Q H, Liu B, et al. Acta Materialia, 2018,147(1),35.
8 Mehran B, Reza T M, Dermot B. International Journal of Mechanical Sciences, 2020, 171(5),105389.
9 Iyad A A, Carlos, Eduardo M B, et al. Journal of Alloys and Compounds, 2019, 803(12),618.
10 Otto F, Dlouhy A, Somsen C, et al. Acta Materialia, 2013,61(15),5743.
11 Laplanche G, Kostka A, Horst O M, et al. Acta Materialia, 2016, 118(8),152.
12 He J Y, Zhu C, Zhou D Q, et al. Intermetallics, 2014, 55(2),9.
13 Dong B, Wang X M, Zhu Z L. Journal of Atomic and Molecular Physics, 2020,37(4),591(in Chinese)
董斌, 王雪梅, 朱子亮.原子与分子物理学报, 2020, 37(4),591.
14 Tian Y Y, Fang Q H, Li J. Nanotechnology, 2020, 31(46),1.
15 Fang Q H, Chen Y, Li J, et al. International Journal of Plasticity, 2019, 114 (6),161.
16 Sun S J, Tian Y Z, Lin H R, et al. Material Science Engineering A, 2018, 712(1),603.
17 Chen J J, Hu H J, Lai L F. Surface Technology,2018,47(8),170(in Chinese).
陈晶晶,胡洪钧,赖联锋. 表面技术, 2018, 47(8),170.
18 Chen J J, Hu H J, Li B Z. Surface Technology, 2017,46(8),195(in Chinese).
陈晶晶,胡洪钧, 李保震. 表面技术, 2017, 46(8),195.
19 Plimpton S. Journal of Computational Physics, 1995, 117(1),1.
20 Guo J, Chen J J, Wang Y Q. Ceramics International, 2020, 46(8),12686.
21 Sun S, PengX H, Xiang H G.Ceramics International, 2017,43(1),16313.
22 Xiang H G, Li H T, Fu T, et al. Acta Materialia, 2017, 138 (12),131.
23 Verlet L. Health Physics,1967, 22(1),79.
24 Jianwei X, Chuang D. Materials Science & Engineering A, 2020, 793 (12),139853.
25 Qian Y, Shang F, Wan Q. Journal of Applied Physics, 2018, 24(11),115102.
26 Qian Y, Shang F, Wan Q. Computer Material Science, 2018, 149(15),230.
27 Goel S, Luo X, Reuben R L. Applied Physical Letter, 2012, 100(23),231.
28 Goel S, Beake B, Chan C, et.al. Material Science Engineering A, 2015, 627(11), 249.
[1] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[2] 金城焱, 杜兴蒿, 闫霏, 史传鑫, 盖业辉, 黄志青, 李万鹏, 武保林, 段国升, 王大鹏. 铜镍合金的强韧化行为及其微观机制的研究进展[J]. 材料导报, 2021, 35(z2): 372-375.
[3] 侯丽丽, 郭强, 要玉宏, 刘江南. B原子促进高熵合金FCC2相的形成机制[J]. 材料导报, 2021, 35(z2): 381-384.
[4] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[5] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[6] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[7] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[8] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[9] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[10] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[11] 朱坤森, 陶平均, 张超汉, 陈育淦, 张维建, 杨元政. Zr基块体非晶合金的成分设计及其性能研究[J]. 材料导报, 2021, 35(24): 24113-24116.
[12] 黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
[13] 张晓博, 刘承军, 姜茂发. 分子动力学模拟在冶金熔渣中的应用进展[J]. 材料导报, 2021, 35(21): 21099-21104.
[14] 王耀城, 刘定坤, 刘伟, 吕阳, 郑愚. 纳米压痕测试技术在GFRP材料中的应用综述[J]. 材料导报, 2021, 35(19): 19214-19222.
[15] 刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed