Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18052-18058    https://doi.org/10.11896/cldb.20070131
  无机非金属及其复合材料 |
柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响
刘冬梅1,2, 张典1,2, 彭艳周1,2, 张亚利1,2, 姚惠芹1,2
1 三峡大学,防灾减灾湖北省重点实验室,宜昌 443002
2 三峡大学土木与建筑学院,宜昌 443002
Effect of Sodium Citrate on Crystal Habit and Mechanical Properties of Different Crystal Surfaces of Hemihydrate Gypsum
LIU Dongmei1,2, ZHANG Dian1,2, PENG Yanzhou1,2, ZHANG Yali1,2, YAO Huiqin1,2
1 Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang 443002, China
2 School of Civil Engineering and Architecture, China Three Gorges University, Yichang 443002, China
下载:  全 文 ( PDF ) ( 7907KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用X射线衍射(XRD)分析方法,研究了在不同柠檬酸钠掺量下半水石膏在蒸压时不同晶面的结晶习性。运用Materials Studio 2017软件进行分子动力学模拟,研究了柠檬酸钠吸附在半水石膏晶体不同晶面的结晶习性。基于等温等容系统(NVT)对柠檬酸钠吸附于半水石膏晶体不同晶面的最低能运动轨迹进行模拟,研究了半水石膏晶体不同晶面的力学性能。XRD分析结果表明:柠檬酸钠的掺量为0.06%(质量分数,下同)时,半水石膏晶体的(200)晶面、(020)晶面和(400)晶面衍射峰强度最高,即晶面发育较好。分子动力学模拟结果表明:从柠檬酸根离子与半水石膏晶面距离来看,(200)晶面和(400)晶面是柠檬酸根离子与Ca2+的主要结合位点;相互作用能从小到大的顺序为ΔE(400)E(200)E(111)E(204)E(020),则柠檬酸钠更易于与半水石膏晶体的(200)晶面、(400)晶面作用,从而抑制半水石膏晶体在C轴方向上生长;从弹性模量(E)、体模量(K)和剪切模量(G)等力学性能的参数可知,柠檬酸根离子与(200)晶面和(111)晶面上钙离子之间主要有较强的结合力,即柠檬酸根离子易于吸附在C轴方向的晶面上。柠檬酸根离子使半水石膏晶体在垂直于C轴方向上的尺寸变大,对半水石膏晶体在C轴方向上的强度的影响显著。试验所得的晶面分析结果与模型研究的结果具有互证性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘冬梅
张典
彭艳周
张亚利
姚惠芹
关键词:  半水石膏  分子动力学模拟  晶面  吸附  相互作用能  力学性能    
Abstract: Using X-ray diffraction (XRD) analysis method, and the crystallization habits of different crystal faces of hemihydrate gypsum under different sodium citrate content were studied. Using Materials Studio 2017 software for molecular dynamics simulation, the crystallization habits of sodium citrate adsorbed on different crystal faces of hemihydrate gypsum crystals were studied. Based on the isothermal isovolumetric system (NVT), the minimum energy trajectories of sodium citrate adsorbed on different crystal faces of hemihydrate gypsum crystal was simulated, and the mechanical properties of different crystal planes of hemihydrate gypsum crystals were studied. X-ray diffraction (XRD) analysis results show that, when the mass content of sodium citrate is 0.06%, the diffraction peaks of (200) crystal plane, (020) crystal plane and (400) crystal plane of hemihydrate gypsum crystals reaches the maximum, that is, the above planes developed well. The molecular dynamics simulation results show that: (200) and (400) planes are the main binding sites of citrate ions and Ca2+ from the distance between citrate ion and hemihydrate gypsum. The order of interaction energy from small to large is ΔE(400) < ΔE(200) < ΔE(111)E(204) < ΔE(020), then sodium citrate is more likely to interact with (200) and (400) planes of hemihydrate gypsum crystal, thus inhibiting the growth of hemihydrate gypsum crystal in the C axis direction. According to the mechanical properties such as elastic modulus (E), bulk modulus (K) and shear modulus (G), there is a strong binding force between citrate ions and calcium ions on (200) and (111) crystal planes, that is, citrate ions are easy to adsorb on the crystal planes along the C axis. The size of hemihydrate gypsum crystal in the direction perpendicular to the C axis is enlarged by citrate ion, which has a significant effect on the strength of hemihydrate gypsum crystal in the direction of C axis. The crystal plane analysis results obtained from the experiment are mutually corroborative with the model research results.
Key words:  hemihydrate gypsum    molecular dynamics simulation    crystal plane    adsorption    interaction energy    mechanical property
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51379111);湖北省自然科学基金(2018CFB642)
作者简介:  刘冬梅,三峡大学土木与建筑学院副教授,2007年6月,在武汉大学获得工学博士学位。2007年7月加入三峡大学土木学院至今。主要从事水泥基材料及混凝土性能研究,在国内外重要期刊公开发表论文10余篇,申报发明专利1项。
彭艳周,三峡大学副教授,硕士研究生导师。1997年毕业于现武汉理工大学材料工程专业,获工学学士学位;2006年毕业于武汉理工大学材料学专业,获工学硕士学位;2009年毕业于武汉理工大学建筑材料与工程专业,获工学博士学位。以第一作者或通讯作者发表学术论文20余篇,申请国家发明专利5项,其中授权2项,同时担任国内外多个学术期刊的审稿人。研究工作主要围绕建筑材料,开展新型胶凝材料、建筑垃圾及工业固废的资源化应用研究、高性能水泥基材料、混凝土结构耐久性等方面的研究。近年来主持包括湖北省科技支撑计划公益性科技研究项目、湖北省自然科学基金项目、硅酸盐建筑材料国家重点实验室(武汉理工大学)开放基金项目、湖北省教育厅科学技术研究项目等。
引用本文:    
刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
LIU Dongmei, ZHANG Dian, PENG Yanzhou, ZHANG Yali, YAO Huiqin. Effect of Sodium Citrate on Crystal Habit and Mechanical Properties of Different Crystal Surfaces of Hemihydrate Gypsum. Materials Reports, 2021, 35(18): 18052-18058.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070131  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18052
1 Lin Z S. Cementitious materials, Wuhan University of Technology Press, China, 2014 (in Chinese).
林宗寿. 胶凝材料学, 武汉理工大学出版社, 2014.
2 Wang C, Gao H F, Nie J H,et al. Journal of China University of Mining & Technology, 1998(1), 50 (in Chinese).
王超, 高贺凤, 聂继红, 等. 中国矿业大学, 1998(1),50.
3 Bai Y, Li D X. Journal of the Chinese Ceramic Society, 2009, 37(7), 1142 (in Chinese).
白杨, 李东旭. 硅酸盐学报, 2009, 37(7), 1142.
4 Ru X H. Processing theory and application technology research of phos-phogypsum based gypsum plaster. Master's Thesis, Wuhan University of Technology, China, 2013 (in Chinese).
茹晓红. 磷石膏基胶凝材料的制备理论及应用技术研究. 硕士学位论文, 武汉理工大学, 2013.
5 Yang L, Wu Z, Guan B, et al. Journal of Crystal Growth, 2009, 311(20), 4518.
6 Peng J H, Zhang J X, Qu J D, et al. Journal of the Chinese Ceramic So-ciety, 2011, 39(10), 1711 (in Chinese).
彭家惠, 张建新, 瞿金东, 等.硅酸盐学报, 2011, 39(10),1711.
7 Zhang J S, Sun P, Ju C, et al. Journal of Shenyang Jianzhu University (Natural Science), 2009, 25(3),521 (in Chinese).
张巨松, 孙蓬, 鞠成, 等. 沈阳建筑大学学报(自然科学版),2009, 25(3), 521.
8 Yani Y, Chow P S, Tan R B H. Molecular Pharmaceutics, 2011, 8(5), 1910.
9 Schmidt C, Ulrich J. Journal of Crystal Growth, 2012, 353(1), 168.
10 Fan H, Song X, Liu T, et al. Journal of Crystal Growth, 2018, 495, 29.
11 Wang J, Jin S, Chen S, et al. Journal of Molecular Modeling, 2018, 24(7), 145.
12 Hu Y J, Huang Y C, Xiao J J,et al. Science in China Ser. B Chemistry, 2005(3),194(in chinese).
胡应杰, 黄玉成, 肖继军, 等.中国科学(B辑 化学),2005(3),194.
13 Ren H. The application of molecular simulation in the calculation of interface interaction. Master's Thesis, Northwestern Polytechnical University, China, 2007 (in Chinese).
任华. 分子模拟在界面相互作用计算中的应用.硕士学位论文, 西北工业大学, 2007.
14 Ding C. Recovering high-purity furfural form dilute aqueous solutions by pevaporation fractional condensation andmolecular dynamics simulastions on sorption-difussion behaviors. Master's Thesis, Taiyuan University of Technology, China, 2016 (in Chinese).
丁川. 渗透汽化—两级冷凝回收高纯度糠醛及吸附扩散行为的分子动力学模拟研究. 硕士学位论文, 太原理工大学, 2016.
15 Bezou C, Nonat A, Mutin J C, et al. Journal of Solid State Chemistry, 1995, 117(1),165.
16 He Y L, Chen D Y, Cai P,et al. Journal of Synthetic Crystals, 2016, 45(1), 192 (in Chinese).
何玉龙, 陈德玉, 蔡攀, 等.人工晶体学报, 2016, 45(1), 192.
17 Wei C X. Molecular simulation on the formation mechanism of co-crystal HMX/TATB and morphology of TATB. Master's Thesis, Southwest University of Science and Technology, China, 2010 (in Chinese).
卫春雪. HMX/TATB共晶机理及TATB晶习的理论研究. 硕士学位论文, 西南科技大学, 2010.
18 Wu J L. Elastic mechanics, Tongji University Press, China, 2001 (in Chinese).
吴家龙.弹性力学, 同济大学出版社, 2001.
19 Ministry of Industry and Information Technology, PRC. JC/T 2038-2010, α-type high strength gypsum, China, 2010 (in Chinese).
中华人民共和国工业和信息化部.JC/T 2038-2010, α型高强石膏,2010.
20 Guan Q, Hu Y, Tang H, et al. Journal of Colloid and Interface Science, 2018, 530, 292.
21 Hou S, Wang J, Wang X, et al. Langmuir, 2014, 30(32), 9804.
22 Wang L J, Liu G S, Song X F, et al. Acta Physico-Chimica Sinica, 2009, 25(5), 963.
23 Myerson A S, Jang S M. Journal of Crystal Growth, 1995, 156(4), 459.
24 Wang Y B, Liu F L, Wang X,et al. Industrial Minerals & Processing, 2010, 39(7), 8 (in Chinese).
王宇斌, 刘福玲, 汪潇, 等.化工矿物与加工, 2010, 39(7), 8.
25 Hansen J P, McDonald I R. Theory of simple liquids, Elsevier, UK, 1990.
26 Henning 0, Brockner 0. Zement-Kalk-Gips, 1990, 43(9), 219.
27 Fu W J, Lin M Q, He H Y, et al. Jourmal of Fast China University of Science and Technology, 2019, 45(2), 266 (in Chinese).
付文健, 林美庆, 何慧艳, 等.华东理工大学学报 (自然科学版), 2019, 45(2), 266.
28 Zhang J S, Zheng W R, Fan Z R,et al. Journal of Shenyang Jianzhu University (Natural Science), 2008(2), 261 (in Chinese).
张巨松, 郑万荣, 范兆荣, 等.沈阳建筑大学学报(自然科学版), 2008(2), 261.
[1] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[2] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[3] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[4] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[5] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[6] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[7] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[8] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[9] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[10] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[11] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[12] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[13] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[14] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[15] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed