Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21099-21104    https://doi.org/10.11896/cldb.20050260
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
分子动力学模拟在冶金熔渣中的应用进展
张晓博, 刘承军, 姜茂发
东北大学多金属共生矿生态化冶金教育部重点实验室, 沈阳 110819
Application and Perspective of Molecular Dynamics Simulation on Metallurgical Slag
ZHANG Xiaobo, LIU Chengjun, JIANG Maofa
Key Laboratory for Ecological Metallurgy of Multimetallic Ores, Ministry of Education, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 2744KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 冶金熔渣是由多种氧化物组成的熔体,常见的有硅酸盐熔渣和铝酸盐熔渣。冶金熔渣具有绝热保温、防止二次氧化、吸收钢液中夹杂物、去除钢液中有害元素等重要作用,制备性能优良的熔渣是实现冶金流程节能减排和绿色发展的重要保证,为此有必要系统地研究冶金熔渣的熔体结构和性质。目前,采用模拟实验直接研究高温熔渣熔体结构和性质的限制因素较多,分子动力学模拟可以弥补实验研究方面的不足。
由于冶金熔渣种类繁多、复杂多变,如何在冶金熔渣的微观结构与宏观性质之间建立广泛的关联是当今国内外学者的研究重点。分子动力学模拟可以获得熔渣中不同粒子对的键长、键角、配位数等完整的熔体结构数据。基于此,研究者利用熔体结构的聚合度建立了多组元熔渣黏度与熔体结构单元的定量关系。此外,熔渣的电导率与熔体结构中离子的扩散能力有关,可以通过Nernst-Einstein关系式建立电导率和熔体结构之间的关系。
本文综述了分子动力学模拟在冶金熔渣中应用的相关研究。首先,对分子动力学模拟在冶金熔渣中的模拟过程进行了介绍。然后,分别详述了分子动力学模拟技术在硅酸盐熔渣和铝酸盐熔渣中的应用现状。最后,总结了现有的问题,并对分子动力学模拟在冶金熔渣中的应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓博
刘承军
姜茂发
关键词:  分子动力学  冶金熔渣  硅酸盐  铝酸盐  熔体结构  黏度    
Abstract: Metallurgical slag is a melt composed of multiple oxides, and it can be classified into silicate slag and aluminate slag. Metallurgical slag has important functions in metallurgy such as heat insulation, prevention of secondary oxidation of molten steel, absorption of inclusions and removal of harmful elements in molten steel. The research and development of slag with excellent performance is a critical guarantee for energy saving, emission reduction and green development of the metallurgy process, so that it is necessary to systematically study the melt structure and properties of metallurgical slag. At present, molecular dynamics (MD) simulation has become an extraordinary method to understand the melt structure and properties of high temperature slag, since experiments would be limited by the availability of the equipment.
Due to the variety and complexity of metallurgical slag, the establishment in a wide range of correlations between the microstructure and macroscopic properties of metallurgical slag has become the research focus of researchers at home and abroad. MD simulation can obtain complete melt structure data such as bond length, bond angle and coordination number of different particle pairs in the slag. Based on this, the researchers used the degree of polymerization of the melt structure to establish the quantitative relationship between the viscosity and the structural units in multi-component slags. In addition, the conductivity of the slag is related to the diffusion capacity of ions in the melt structure, and the relationship between the conductivity and the melt structure can be established through the Nernst-Einstein equation.
In this paper, the application of MD simulation on metallurgical slag is reviewed. First, the process of MD simulation used in metallurgical slag is described. Then, the application status of MD simulation on silicate slag and aluminate slag is introduced in detail respectively. Finally, the prospect of MD simulation on metallurgical slag is proposed by summarizing the existing problems in current researches.
Key words:  molecular dynamics    metallurgical slag    silicate    aluminate    melt structure    viscosity
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TF703.6  
基金资助: 国家自然科学基金项目(51874082;51774087;U1908224)
通讯作者:  liucj@smm.neu.edu.cn   
作者简介:  张晓博,2011年毕业于东北大学,获得工学学士学位。现为东北大学多金属共生矿生态化冶金教育部重点实验室博士研究生,在姜茂发教授和刘承军教授的指导下进行研究。目前主要研究领域为冶金熔渣微观结构与宏观性能的关系。
刘承军,东北大学钢铁冶金系教授、博士生导师,冶金学院副院长,多金属共生矿生态化冶金教育部重点实验室副主任,钢冶金与资源循环研究所所长。先后主持包括国家重点研发计划、国家973、国家自然科学基金、国家科技支撑在内的国家级科研项目10项,省部级科研项目10项,企业重大科技攻关项目12项。入选辽宁省百千万人才工程百人层次。长期从事洁净钢冶炼工艺技术、特殊钢冶金渣系设计等相关领域的研究,发表学术论文280余篇,出版学术专著4部,授权国家发明专利21项。
引用本文:    
张晓博, 刘承军, 姜茂发. 分子动力学模拟在冶金熔渣中的应用进展[J]. 材料导报, 2021, 35(21): 21099-21104.
ZHANG Xiaobo, LIU Chengjun, JIANG Maofa. Application and Perspective of Molecular Dynamics Simulation on Metallurgical Slag. Materials Reports, 2021, 35(21): 21099-21104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050260  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21099
1 Alder B J , Wainwright T E. Journal of Chemical Physics, 1957, 27(5), 1208.
2 Yuan S L, Zhang H, Zhang D J. Molecular simulation-theory and experiment, Chemical Industry Press, China, 2016 (in Chinese).
苑世领, 张恒, 张冬菊. 分子模拟-理论与实验, 化学工业出版社, 2016.
3 Fan K Q, Jia J Y. Micronanoelectronic Technology, 2005, 42(3), 133 (in Chinese).
樊康旗, 贾建援.微纳电子技术, 2005, 42(3), 133.
4 Wen Y H, Zhu R Z, Zhou F X, et al. Advances in Mechanics, 2003, 33(1), 65 (in Chinese).
文玉华, 朱如曾, 周富信, 等. 力学进展, 2003, 33(1), 65.
5 Li Z S, Zhao Y J, Jia X N, et al. Mechanical Management and Development, 2008, 23(2), 174 (in Chinese).
李卓谡, 赵玉洁, 贾晓娜, 等. 机械管理开发, 2008, 23(2), 174.
6 Li L R, Luo L, Wang B F. Heat Treatment Technology and Equipment, 2012, 33(1), 53 (in Chinese).
李丽荣, 罗龙, 王宝峰.热处理技术与装备, 2012, 33(1), 53.
7 Hockney R W. Methods in Computer Physics, 1970, 9, 136.
8 Mcmillan P F, Wolf G H, Poe B T. Chemical Geology, 1992, 96(3), 351.
9 You J L, Wu Z D, Wang M, et al. Spectroscopy and Spectral Analysis, 2018, 38(10), 247 (in Chinese).
尤静林, 吴志东, 王敏, 等.光谱学与光谱分析, 2018, 38(10), 247.
10 Osipov A A, Osipova L M. Journal of Physics: Conference Series, 2013, 410, 1.
11 Dalby K N, Nesbitt H W, Zakaznova-Herzog V P, et al. Geochimica et Cosmochimica Acta, 2007, 71(17), 4297.
12 Woodcock L V, Angell C A, Cheeseman P. The Journal of Chemical Physics, 1976, 65(4), 1565.
13 Huggins M L, Mayer J E. The Journal of Chemical Physics, 1933, 1(9), 643.
14 Mitra S K, Amini M, Fincham D, et al.Philosophical Magazine B Physics of Condensed Matter, 1982, 45(5), 529.
15 Feuston B P, Garofalini S H. The Journal of Chemical Physics, 1988, 89(9), 5818.
16 Vessal B, Amini M, Fincham D, et al. Philosophical Magazine B, 1989, 60(6), 753.
17 Van Beest B W H, Kramer G J, Van Santen R A. Physical Review Letters, 1990, 64 (16), 1955.
18 Huff N T, Demiralp E, Cagin T, et al. Journal of Non-Crystalline Solids, 1999, 253(1-3), 133.
19 Ding Y F, Zhang Y, Zhang F W, et al.Acta Physico-Chimica Sinica, 2008, 24(5), 788 (in Chinese).
丁元法, 张跃, 张凡伟,等.物理化学学报, 2008, 24(5), 788.
20 De Boer K, Jansen A P J, Van Santen R A. Physical Review B, 1995, 52(17), 12579.
21 Wu Y Q, Huang S P, You J L, et al. Transactions of Nonferrous Metals Society of China, 2002, 12(6), 1218.
22 Wu Y Q, Dai C, Jiang G C. Transactions of Nonferrous Metals Society of China, 2014, 24 (5), 1488.
23 Wu T, He S P, Liang Y, et al. Journal of Non-Crystalline Solids, 2015, 411, 145.
24 Zhang S F, Zhang X, Bai C G, et al. ISIJ International, 2013, 53(7), 1131.
25 Yao T H, He S P, Wu T, et al. Ironmaking & Steelmaking, 2017, 44(8), 551.
26 Yao T H. Simulation of melting structure and properties of CaO-SiO2-TiO2 slag. Master's Thesis, Chongqing University, China, 2017 (in Chinese).
姚廷华. CaO-SiO2-TiO2渣系熔融结构与性质的模拟研究. 硕士学位论文, 重庆大学, 2017.
27 Matsumiya T, Nogami A, Fukuda Y. ISIJ International, 1993, 33(1), 210.
28 Asada T, Yamada Y, Ito K. ISIJ International, 2008, 48(1), 120.
29 Fan G Z, Diao J, Jiang L, et al. Materials Transactions, 2015, 56(5), 655.
30 Diao J, Zhang Q, Qiao Y, et al. High Temperature Materials and Processes, 2018, 37(2), 141.
31 Liang X P, Lu D X, Wang Y, et al. Journal of Chongqing University (Natural Science), 2015, 38(5), 135 (in Chinese).
梁小平, 陆东旭, 王雨, 等. 重庆大学学报:自然科学版, 2015, 38(5), 135.
32 Shen F M.Angang Technology, 2005, 336(6), 1 (in Chinese).
沈峰满. 鞍钢技术, 2005, 336(6), 1.
33 Zhang L, Wang W L.Steelmaking, 2017, 33(3), 20 (in Chinese).
张磊, 王万林.炼钢, 2017, 33(3), 20.
34 Zhang L, Wang W L, Shao H Q.Journal of Iron and Steel Research International, 2019, 26(4), 336.
35 Wu Y Q, You J L, Jiang G C. Journal of Inorganic Materials, 2003, 18(3), 619 (in Chinese).
吴永全, 尤静林, 蒋国昌.无机材料学报, 2003, 18(3), 619.
36 Wu Y Q, Hou H Y, Chen H, et al. Transactions of the Nonferrous Metals Society of China, 2001, 11(6), 965.
37 Zhang X B, Liu C J, Jiang M F. Journal of Northeastern University (Na-tural Science), 2020, 41(4), 510 (in Chinese).
张晓博, 刘承军, 姜茂发.东北大学学报:自然科学版, 2020, 41(4), 510.
38 Lu D X. Molecular dynamics simulation of electroslags.Master's Thesis, Chongqing University, China, 2016 (in Chinese).
陆东旭. 电渣重熔渣系的分子动力学模拟研究. 硕士学位论文,重庆大学, 2016.
39 Wu Y Q, Jiang G C, Hou H Y, et al. Journal of Central South University of Technology, 2004, 11(1), 6.
40 Zheng K, Zhang Z, Yang F, et al. ISIJ International, 2012, 52(3), 342.
41 Wu T, Wang Q, Yu C, et al. Journal of Non-Crystalline Solids, 2016, 450, 23.
42 Shimoda K, Saito K. ISIJ International, 2007, 47(9), 1275.
43 Liu Y H, Bai C G, Lv X W, et al. Materials Today: Proceedings, 2015, 2, 453.
44 Mongalo L, Lopis A S, Venter G A, et al. Journal of Non-Crystalline So-lids, 2016, 452, 194.
45 Fan G Z , He S P, Wu T , et al. Metallurgical and Materials Transactions B, 2015, 46(4), 2005.
46 Wang X J, Jin H B, Zhu L G, et al. Materials Reports, 2019, 33(4), 1395 (in Chinese).
王杏娟, 靳贺斌, 朱立光, 等. 材料导报, 2019, 33(4), 1395.
47 Xiao C. Molecular dynamics simulation of microstructure and properties for CaO-SiO2-Al2O3-Na2O melt system. Master's Thesis, Jiangxi University of Science and Technology, China, 2017 (in Chinese).
肖成. CaO-SiO2-Al2O3-Na2O体系熔体微观结构与性质的分子动力学模拟. 硕士学位论文, 江西理工大学, 2017.
48 Zhang S F, Zhang X, Peng H J, et al. ISIJ International, 2014, 54(4), 734.
49 Zhang S F, Zhang X, Liu W, et al. Journal of Non-Crystalline Solids, 2014, 402(402), 214.
50 Zhang J. Study on fluidity and structure of blast furnace slag bearing high Al2O3. Master's Thesis, Chongqing University, China, 2016 (in Chinese).
张杰. 高铝高炉渣流动性及结构研究. 硕士学位论文, 重庆大学, 2016.
[1] 周志刚, 陈功鸿, 张红波, 凌永毅. 橡胶粉/SBS与高黏剂复合改性沥青的制备及性能研究[J]. 材料导报, 2021, 35(6): 6093-6099.
[2] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[3] 刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
[4] 崔庆贺, 马琳, 周长壮, 梁金第, 宋雨键. 硅酸盐玻璃/铝合金异种材料连接综述[J]. 材料导报, 2021, 35(15): 15107-15114.
[5] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[6] 赵敏, 张明涛, 彭家惠, 黄谦, 赵亮. 硫铝酸盐水泥增强建筑石膏的力学性能与耐水性能机理[J]. 材料导报, 2021, 35(12): 12099-12102.
[7] 寇佩佩, 冯瑞成, 李海燕, 李龙龙. 晶向和温度对含孔洞单晶TiAl-Nb合金断裂行为的影响[J]. 材料导报, 2021, 35(10): 10114-10119.
[8] 李萍, 左迎峰, 王向军, 袁光明, 李贤军, 吴义强. 基于呼吸法的硅酸盐改性杉木工艺优化与耐火性能研究[J]. 材料导报, 2021, 35(10): 10197-10204.
[9] 崔介东, 曹欣, 王萍萍, 石丽芬, 仲召进, 赵凤阳, 高强, 李金威. 玻璃黏温曲线的全温度段拟合[J]. 材料导报, 2020, 34(Z2): 128-131.
[10] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[11] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[12] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[13] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[14] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[15] 李少杰, 闫军, 杜仕国, 鲁彦玲, 蔡军锋. 聚脲弹性体微相分离研究及主要进展[J]. 材料导报, 2020, 34(21): 21205-21210.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed