Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23142-23152    https://doi.org/10.11896/cldb.20060035
  金属与金属基复合材料 |
选区激光熔化成型铝合金的研究现状及展望
黄建国, 任淑彬
北京科技大学新材料技术研究院,北京 100083
Research Status and Prospect of Aluminum Alloy Manufactured by Selective Laser Melting
HUANG Jianguo, REN Shubin
Institute for Advanced Materials and Technology, University of Science & Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 19087KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着航空航天、汽车轻量化的需求不断上升,经过结构优化的复杂金属构件采用增材制造技术一体成型必然是今后高端产品制造业的发展趋势。铝合金优异的综合性能与远低于钛合金原料的价格,使其在增材制造领域中极具应用和研究潜力。金属增材制造方法繁多,选区激光熔化技术(SLM)由于成型件表面质量优良、综合性能优异,在复杂结构与薄壁结构集成化的零件成型中具有显著优势,颇受科研和工业界关注。
然而,由于铝合金粉末具有激光反射率高、热导率较大、流动性较差且易与氧气发生反应等特点,使得成型件极易产生球化、裂纹、孔隙、氧化夹杂等冶金缺陷,不能满足实际应用中的性能要求。其中,研究较为深入的AlSi10Mg、Al-12Si等铸造系铝合金并不能满足很多领域对强度的要求,高强合金在SLM成型过程中极易发生元素烧损、产生裂纹等不良现象。因此,明确各类缺陷的形成机理辅助调控SLM成型铝合金的工艺参数以减少缺陷产生,开发适用于SLM成型的新型铝合金粉末成为学者们的研究焦点。
本文主要从Al-Si系铸造合金、高强铝合金以及铝基复合材料三个方面来介绍近年来SLM成型铝合金的研究进展。针对SLM成型的铝合金种类少、成型工艺条件不成熟、冶金缺陷难以控制以及零件性能与微观组织间的量化研究不系统的困境,提出可以引入材料基因工程(MGE)的理念,结合人工智能技术寻求成分-组织-工艺-性能之间的量化关系,开发适用于SLM成型特点的新型铝合金粉末,实现从应用需求出发反向设计材料成分与工艺的目的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄建国
任淑彬
关键词:  选区激光熔化成型(SLM)  铝合金  铝基复合材料  冶金缺陷  材料基因工程(MGE)    
Abstract: With the increasing demand for lightweighting in aerospace and automobiles, the integration of structurally optimized complex metal components with additive manufacturing technology is bound to be the future development trend of the high-end product manufacturing industry. The excellent comprehensive performance of aluminum alloy and the far lower price than titanium alloy make it have great application and research potential in additive manufacturing. There are many methods of metal additive manufacturing. Selective laser melting (SLM) has attracted the attention of scientific research and industry because of its excellent surface quality and comprehensive performance, which has significant advantages in the forming of parts with complex structures and thin-walled structure integration.
However, due to the characteristics of high laser reflectivity, high thermal conductivity, poor fluidity and easy reaction with oxygen,the molded parts are prone to metallurgical defects such as balling, cracks, pores and oxidation inclusions, which cannot meet the performance requirements in practical applications. AlSi10Mg, Al-12Si and other cast aluminum alloys studied deeply can not meet the strength in many fields. High-strength alloys are extremely prone to undesirable phenomena such as element burning and cracking during SLM forming. Therefore, it has become the research focus to develop a series of new aluminum alloy powders and clarify the formation mechanism of various defects to reduce the generation of defects during the SLM process.
In this paper, the researchstatus of aluminum alloy by SLM in recent years has been introduced from three aspects: Al-Si casting alloy, high strength aluminum alloy,and aluminum matrix composite. In view of the dilemma of aluminum alloys formed by SLM, such as the parameters of process conditions are immature, the metallurgical defects are difficult to control, and the quantitative research between part performance and microstructure is not systematic. The author proposes that the concept of material genetic engineering (MGE) can be introduced and combined with artificial intelligence technology to seek a quantitative relationship between composition-microstructure-process-performance. It is helpful to develop a new type of aluminum alloy powder suitable for SLM characteristics, and achieve the purpose of reverse design of material composition and process from the application requirements.
Key words:  selective laser melting (SLM)    aluminium alloy    aluminum matrix composite    metallurgical defect    material genetic engineering (MGE)
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51874038);广东省重点领域研发计划(2019B010942001)
通讯作者:  sbren@ustb.edu.cn   
作者简介:  黄建国,2019年6月毕业于江西理工大学,获得工学学士学位。现为北京科技大学新材料技术研究院硕士研究生,在任淑彬教授的指导下进行研究。目前主要研究领域为金属3D打印和金属基复合材料。
任淑彬,北京科技大学新材料技术研究院教授、博士研究生导师。2002年毕业于北京科技大学,获得学士学位;2002—2007年于北京科技大学硕博连读获得博士学位;2013年入选北京高等学校“青年英才计划”;2015.7—2016.6皇家墨尔本理工大学(RMIT)访问学者。主要从事金属基复合材料、金属3D打印、粉末冶金多孔材料、汽轮机用特种合金材料的研究,获得中国有色金属工业科学技术一等奖1项(排名第一),发表论文50余篇,授权发明专利30余项。
引用本文:    
黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142-23152.
HUANG Jianguo, REN Shubin. Research Status and Prospect of Aluminum Alloy Manufactured by Selective Laser Melting. Materials Reports, 2021, 35(23): 23142-23152.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060035  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23142
1 Zhang X J, Tang S Y, Zhao H Y, et al. Journal of Materials Enginee-ring, 2016, 44(2), 122 (in Chinese).
张学军, 唐思熠, 肇恒跃,等. 材料工程, 2016, 44(2), 122.
2 Yang Y Q, Wang D. 3D printing technology for selective laser melting, Huazhong University of Science and Technology Press, 2019(in Chinese).
杨永强, 王迪. 激光选区熔化3D打印技术, 华中科技大学出版社, 2019.
3 Kaufmann N, Imran M, Wischeropp T M, et al. Physics Procedia, 2016, 83, 918.
4 Zhang H, Zhu H H, Qi T, et al. Materials Science & Engineering A, 2016, 656, 47.
5 Croteau J R, Griffiths S, Rossell M D,et al. Acta Materialia, 2018, 153, 35.
6 Zhou X. Research on micro-scale melt pool characteristics and solidified microstructures in selective laser melting. Ph.D. Thesis, Tsinghua University, China, 2016 (in Chinese).
周鑫. 激光选区熔化微尺度熔池特性与凝固微观组织. 博士学位论文, 清华大学, 2016.
7 Pei W, Wei Z Y, Chen Z, et al. Applied Surface Science, 2017, 408, 38.
8 Wang W, Liu B Y, Li C F, et al. Rare Metal Materials and Engineering, 2019, 48(1), 279 (in Chinese).
王维, 柳宝元, 李长富, 等. 稀有金属材料工程, 2019, 48(1), 279.
9 Galy C, Le Guen E, Lacoste E, et al. Additive Manufacturing, 2018, 22, 165.
10 Bertoli U S, Wolfer A J, Matthews M J,et al. Materials & Design, 2017, 113, 331.
11 Sing S L, An J, Yeong W Y, et al. Journal of Orthopaedic Research, 2016, 34(3), 369.
12 Aboulkhair N T, Everitt N M, Ashcroft I, et al. Additive Manufacturing, 2014, 1-4, 77.
13 Gu D D, Dai D H, Xia M J, et al. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5), 645 (in Chinese).
顾冬冬, 戴冬华, 夏木建, 等. 南京航空航天大学学报, 2017, 49(5), 645.
14 Zhang J L, Song B, Wei Q S, et al. Journal of Materials Science & Technology, 2019, 35, 270.
15 Louvis E, Fox P, Sutcliffe C J. Journal of Materials Processing Technology, 2011, 211, 275.
16 Deng D, Murakawa H. Computational Materials Science, 2006, 37(3), 269.
17 Kim D K, Hwang J H, Kim E Y, et al. Journal of Alloys & Compounds, 2017, 714, 687.
18 Read N, Wang W, Essa K, et al. Materials & Design, 2015, 65, 417.
19 Fousova M, Dvorsky D, Michalcova A, et al. Materials Characterization, 2018, 137, 119.
20 Aboulkhair N T, Maskery I, Tuck C, et al. Materials Science & Enginee-ring A, 2016, 667, 139.
21 Kempen K, Thijs L, Van Humbeeck J, et al. Materials Science & Technology, 2015, 31, 917.
22 Li W, Li S, Liu J, et al. Materials Science & Engineering A, 2016, 663, 116.
23 Wang L F, Jiang X H, Guo M X, et al. Materials Science & Technology, 2017, 33(18), 2274.
24 Uzan N E, Shneck R, Yeheskel O, et al. Materials Science & Engineering A, 2017, 704, 229.
25 Martin J H, Yahata B D, Hundley J M, et al. Nature, 2017, 549(7672), 365.
26 Thijs L, Kempen K, Kruth J P, et al. Acta Materialia, 2013, 61, 1809.
27 Trevisan F, Calignano F, Lorusso M, et al. Materials, 2017, 10(1), 76.
28 Liu X H, Zhao C C, Zhou X, et al. Materials & Design, 2019, 168, 107677.
29 Chen B, Moon S K, Yao X, et al. Scripta Materialia, 2017, 147, 45.
30 Asgari H, Baxter C, Hosseinkhani K, et al. Materials Science & Engineering A, 2017, 707, 148.
31 Delroisse P, Jacques P J, Maire E, et al. Scripta Materialia, 2017, 141, 32.
32 Aboulkhair N T, Maskery I, Tuck C, et al. Journal of Materials Proce-ssing Technology, 2016, 230, 88.
33 Brandl E, Heckenberger U, Holzinger V, et al. Materials & Design, 2012, 34, 159.
34 Yu K B, Liu Y Z, Yang C Y. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3), 298 (in Chinese).
余开斌, 刘允中, 杨长毅. 粉末冶金材料科学与工程, 2018, 23(3), 298.
35 Prashanth K G, Scudino S, Klauss H J, et al. Materials Science & Engineering A, 2014, 590, 153.
36 Prashanth K G, Debalina B, Wang Z,et al. Journal of Materials Research, 2014, 29(17), 2044.
37 Yang Y, Chen Y, Zhang J X, et al. Materials & Design, 2018, 146, 239.
38 Wang X J, Zhang L C, Fang M H,et al. Materials Science & Engineering A, 2014, 597, 370.
39 Chou R, Milligan J, Paliwal M, et al. JOM, 2015, 67(3), 590.
40 Suryawanshi J, Prashanth K G, Scudino S, et al. Acta Materialia, 2016, 115, 285.
41 Ma P, Prashanth K G, Scudino S, et al. Metals, 2014, 4(1), 28.
42 Kimura T, Nakamoto T. Materials & Design, 2016, 89, 1294.
43 Fiocchi J, Biffi C A, Tuissi A. Materials & Design, 2020, 191, 108581.
44 Kimura T, Nakamoto T, Mizuno M, et al. Materials Science & Engineering A, 2017, 682, 593.
45 Zhu H H, Liao H L. Laser & Optoelectronics Progress, 2018, 55(1), 22 (in Chinese).
朱海红, 廖海龙. 激光与光电子学进展, 2018, 55(1), 22.
46 Zhang H, Nie X J, Zhu H H, et al. Chinese Journal of Lasers, 2016, 43(5), 84 (in Chinese).
张虎, 聂小佳, 朱海红, 等. 中国激光, 2016, 43(5), 84.
47 Qi T, Zhu H H, Zhang H, et al. Materials & Design, 2017, 135, 257.
48 Sistiaga M L M, Mertens R, Vrancken B, et al. Journal of Materials Processing Technology, 2016, 238, 437.
49 Otani Y, Sasaki S. Materials Science & Engineering A, 2020, 777, 139079.
50 Li R D, Wang M B, Li Z M, et al. Acta Materialia, 2020, 193, 83.
51 Zhang H, Zhu H H, Nie X J, et al. Scripta Materialia, 2017, 134, 6.
52 Tu C, Liu Y Z, Hu L, et al. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4), 349 (in Chinese).
涂诚, 刘允中, 胡亮, 等. 粉末冶金材料科学与工程, 2019, 24(4), 349.
53 Zhou Y, Zhang D Y, Wang W D, et al. Aeronautical Manufacturing Technology, 2018, 61(10), 68 (in Chinese).
周岩, 张冬云, 王卫东, 等. 航空制造技术, 2018, 61(10), 68.
54 Dadbakhsh S, Hao L. Advanced Engineering Materials, 2011, 14(1-2), 45.
55 Dadbakhsh S, Hao L, Jerrard P G E, et al. Powder Technology, 2012, 231, 112.
56 Han Q Q, Setchi R, Lacan F. Materials Science & Engineering A, 2017, 698, 162.
57 Han Q Q, Geng Y Q, Setchi R, et al. Composites Part B, 2017, 127, 26.
58 Astfalck L C, Kelly G K, Li X, et al. Advanced Engineering Materials, 2017, 19(8), 1600835.
59 Wang H Q. Al based nanocomposites prepared by mechanical alloying and selective laser melting fabrication. Master's Thesis, Nanjing University of Aeronautics & Astronautics, China, 2015 (in Chinese).
王泓乔. Al基纳米复合材料机械合金化制备及选区激光熔化成形研究. 硕士学位论文,南京航空航天大学, 2015.
60 Chang F, Gu D D, Dai D, et al. Surface & Coatings Technology, 2015, 272, 15.
61 Gu D D, Rao X W, Dai D H, et al. Additive Manufacturing, 2019, 29, 100801.
62 Hu L, Liu Y Z, Tu C, et al. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4), 365 (in Chinese).
胡亮, 刘允中, 涂诚, 等. 粉末冶金材料科学与工程, 2019, 24(4), 365.
63 Li X P, Ji G, Chen Z, et al. Acta Materialia, 2017, 129, 183.
64 Gao C, Wu W, Shi J, et al. Additive Manufacturing, 2020, 34, 101378.
65 Allison J, Li M, Wolverton C, et al. JOM, 2006, 58(11), 28.
66 Aboulkhair N T, Simonelli M, Parry L, et al. Progress in Materials Science, 2019, 106, 100578.
67 Wang C S, Fu H D, Jiang L, et al. Npj Computational Materials, 2019, 5, 87.
68 Liu Q, Wu H, Paul M J, et al. Acta Materialia, 2020, 201, 316.
[1] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[2] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[3] 于芳, 晁代义, 邢雷, 王欣, 黄同瑊, 王向杰. 单级时效工艺对7075铝合金包覆薄板力学性能的影响[J]. 材料导报, 2021, 35(Z1): 411-413.
[4] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[5] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[6] 秦芳诚, 齐会萍, 李永堂, 刘崇宇, 亓海全, 康跃华. 铝合金环形零件形/性一体化制造技术[J]. 材料导报, 2021, 35(9): 9049-9058.
[7] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[8] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[9] 朱振宇, 涂浩, 吴长军, 彭浩平, 王建华, 苏旭平. 熔铸工艺对2618铝合金中难溶相尺寸与分布的影响[J]. 材料导报, 2021, 35(4): 4129-4133.
[10] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[11] 贺春花, 李红萍, 叶凌英, 刘胜胆, 唐建国. 晶粒组织对7150铝合金抗腐蚀性能的影响[J]. 材料导报, 2021, 35(22): 22109-22114.
[12] 秦丰, 李睿, 张春波, 周军, 赵衍华. 铝/钢异种金属轴向摩擦焊研究现状[J]. 材料导报, 2021, 35(21): 21228-21235.
[13] 赵华星, 孙晓峰, 宋巍, 李占明, 李德民. 微弧氧化技术在铝合金腐蚀防护中的应用研究与发展[J]. 材料导报, 2021, 35(21): 21236-21242.
[14] 杨海峰, 赵洪运, 许欣欣, 孙广达, 周利, 赵慧慧, 刘会杰. 静轴肩搅拌摩擦焊2A14-T4铝合金T形接头的组织和性能[J]. 材料导报, 2021, 35(20): 20045-20051.
[15] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed