Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22109-22114    https://doi.org/10.11896/cldb.20080164
  金属与金属基复合材料 |
晶粒组织对7150铝合金抗腐蚀性能的影响
贺春花, 李红萍, 叶凌英, 刘胜胆, 唐建国
中南大学材料科学与工程学院,长沙 410083
Effect of Grain Structure on Corrosion Resistance of 7150 Al Alloy
HE Chunhua, LI Hongping, YE Lingying, LIU Shengdan, Tang Jianguo
School of Materials Science and Engineering, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 5174KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过四点弯曲应力腐蚀和剥落腐蚀实验,并利用金相显微镜(OM)、电子背散射衍射(EBSD)、扫描透射电镜(STEM)等微观组织表征手段研究了不同晶粒组织对7150铝合金腐蚀性能的影响。结果表明:粗晶具有较高的应力腐蚀敏感性,表层具有粗晶的试样断裂时间为16 h,而除去表层粗晶,仅含有纤维晶的试样断裂时间为124 h。粗晶抗剥落腐蚀性能优于纤维晶,粗晶的剥落腐蚀等级为P,纤维晶剥落腐蚀等级为EC/D。粗晶晶界为界面能较高的大角度晶界,且大角度晶界无沉淀析出带(PFZ)宽度较宽,晶界强度较低,应力腐蚀裂纹易沿着大角度晶界扩展。而中心纤维晶晶界析出相(GBP) Cu含量低,Zn含量高,导致析出相与基体之间电势相差较大,析出相易溶解,且其连续分布特征进一步加速这一腐蚀过程,因此,纤维晶剥落腐蚀敏感性更高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺春花
李红萍
叶凌英
刘胜胆
唐建国
关键词:  7150铝合金  晶粒组织  应力腐蚀  剥落腐蚀    
Abstract: The effect of different grain structures on corrosion performance of 7150 alloy was studied by four-point bending test, exfoliation corrosion immersion, optical microscope (OM), electron back scattered diffraction (EBSD), and scanning transmission electron microscope (STEM). The results show that the coarse grain on surface has higher stress corrosion sensitivity. The fracture time of samples with coarse grain and fiber grain are about 16 h and 124 h, respectively. The anti-exfoliation corrosion of coarse grain is superior to the fiber grain. The exfoliation corrosion grade of coarse grain is P, while the exfoliation corrosion grades of fiber grain are EC/D. Coarse grain boundaries are high-angle grain boundaries with higher surface energy, and have wider precipitate-free zone (PFZ), which decreases the boundary strength. So, the stress corrosion cracks are easy to propagate along the high-angle grain boundaries. Poor exfoliation corrosion of fiber grain is related to the low content of Cu in grain boundary precipitates (GBPs) leading to the dissolution of precipitates. And the continuous distribution of grain boundary precipitates in fiber grain accelerates the dissolution process. Therefore, fiber grain has higher sensitivity of exfoliation corrosion.
Key words:  7150 Al alloy    grain structure    stress corrosion    exfoliation corrosion
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TG146.2  
基金资助: 国家重点研发计划项目(2016YFB0300901)
通讯作者:  lingyingye@csu.edu.cn   
作者简介:  贺春花,中南大学材料科学与工程学院硕士研究生。研究工作主要围绕高性能铝合金,进行性能测与工艺开发。参与国家自然科学基金项目 1 项,校企合作项目 2项。
叶凌英,中南大学副教授,博士研究生导师。中国机械工程学会塑性工程分会超塑性论坛学术委员会委员, 河南省紧固连接技术重点实验室学术委员会委员。主要从事高性能铝合金组织与性能调控、晶粒细化、高温变形行为及机理方面的研究。主持国家自然科学基金青年基金项目1项,国家重点研发计划项目子课题2项,国家863计划课题3项,校企合作项目10余项。已在各类学术期刊上发表论文60余篇,获国家发明专利10余项,获中航工业集团科学技术奖三等奖。
引用本文:    
贺春花, 李红萍, 叶凌英, 刘胜胆, 唐建国. 晶粒组织对7150铝合金抗腐蚀性能的影响[J]. 材料导报, 2021, 35(22): 22109-22114.
HE Chunhua, LI Hongping, YE Lingying, LIU Shengdan, Tang Jianguo. Effect of Grain Structure on Corrosion Resistance of 7150 Al Alloy. Materials Reports, 2021, 35(22): 22109-22114.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080164  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22109
1 Rao A C U, Vasu V, Govindaraju M, et al. Transactions of Nonferrous Metals Society of China. 2016, 26(6), 7.
2 Zhuang J J, Zhang X Y, Sun B, et al. Chinese Journal of Engineering, 2017, 39(10), 1532(in Chinese).
庄俊杰, 张晓燕, 孙斌,等.工程科学学报, 2017, 39(10), 1532.
3 Han X L, Xiong B Q, Zhang Y A, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(6), 1095(in Chinese).
韩小磊, 熊柏青, 张永安, 等.中国有色金属学报, 2010, 20(6), 1095.
4 Rout K P, Ghosh K S. Materials Today Proceedings, 2018, 5(1), 2391.
5 Li J F, Jia Z Q, Li Z X, et al. Corrosion Science and Protection Technology, 2009, 21(2), 107(in Chinese).
李劲风, 贾志强, 李朝兴, 等.腐蚀科学与防护技术, 2009, 21(2), 107.
6 Zhang Z, Deng Y L, Ye L Y, et al. Journal of Alloys and Compounds, 2020, 846, 156.
7 Huang X, Pan Q L, Li B, et al. Journal of Central South University (Science and Technology), 2015,46 (11), 4034(in Chinese).
黄星, 潘清林, 李波, 等.中南大学学报:自然科学版, 2015, 46(11), 4034.
8 Reda Y, Abdelkarim R, Elmahallawi I, et al. Materials Science & Engineering A, 2008, 485(1), 468.
9 Krishnanunni S, Gupta R K, Ajithkumar G, et al. Materials Today: Proceedings, 2020,27,2385.
10 Wang Y C, Cao L F, Wu X D, et al. Journal of Alloys and Compounds, 2019, 814, 152.
11 Fang H C, Chao H, Chen K H, et al. Chinese Journal of Rare Metals, 2015(8), 686(in Chinese).
方华婵, 巢宏, 陈康华, 等.稀有金属, 2015(8), 686.
12 Wang Q, Yang Z K, Chai W R, et al. Transaction of Nonferrous Metals Society of China,2019, 29(12), 2691(in Chinese).
汪庆,杨臻珅,柴文茹,等.中国有色金属学报, 2019, 29(12), 2691.
13 Wu P P, Tian A Q, Duan H W, et al. Failure Analysis and Prevention, 2016, 11(1), 6(in Chinese).
吴沛沛, 田爱琴, 段浩伟, 等.失效分析与预防, 2016, 11(1), 6.
14 Ye L Y, Yao X B, Tang J G, et al. Journal of Central South University (Science and Technology), 2019, 50(5), 1049(in Chinese).
叶凌英, 姚学彬, 唐建国, 等.中南大学学报 (自然科学版), 2019, 50(5), 1049.
15 Fan X, Jiang D M, Zhong L, et al. Materials Characterization, 2007, 58(1), 24.
16 Wloka J, Hack T, Virtanen S.Corrosion Science, 2007, 49(3), 1437.
17 Ding Q W, Zhang D, Yan Y, et al. Corrosion Science, 2020, 169,108622.
18 Dix E H. AIME TRANS, 1940, 137, 11.
19 Bond G M, Robertson I M, Birnbaum H K.Acta Metallurgica, 1987, 35(9), 2289.
20 Viswanadham R K, Sun T S, Green J A S.Metallurgical Transactions A, 1980, 11(1), 85.
21 Christodoulou L, Flower H M.Acta Metallurgica, 1980, 28(4), 481.
22 Marlaud T, Malki B, Henon C, et al. Corrosion Science, 2011, 53(10), 1399.
23 Chai W R, Chen J C, Liu S D, et al. Chinese Journal of Materials Research, 2019, 33(7), 488(in Chinese).
柴文茹, 陈景超, 刘胜胆, 等.材料研究学报, 2019, 33(7), 488.
24 Day M K B, Cornish A J, Dent T P.Metal Science, 1969, 3(1), 175.
25 Qu M, Tang J G, Ye L Y, et al. Materials Reports B: Research Papers, 2020, 34(2), 2083(in Chinese).
瞿猛, 唐建国, 叶凌英, 等.材料导报:研究篇, 2020, 34(2), 2083.
[1] 张度宝, 李成涛, 方可伟, 罗坤杰, 王力, 武焕春, 薛飞. 回火温度对42CrMo4高强钢力学性能及应力腐蚀敏感性的影响[J]. 材料导报, 2021, 35(16): 16133-16137.
[2] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[3] 魏乔苑, 李跃忠, 赵毛毛, 冉小兵. 水环境对控制棒驱动机构Ω焊缝母材应力腐蚀的影响[J]. 材料导报, 2020, 34(Z1): 462-465.
[4] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[5] 荆婉婷, 吴明. 海洋干湿交替环境中HCO3-浓度对X100钢腐蚀行为的影响[J]. 材料导报, 2020, 34(24): 24138-24144.
[6] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[7] 张建龙, 薛河, 崔英浩, 陈浩. 加工硬化对304不锈钢应力腐蚀裂纹裂尖力学性能的影响[J]. 材料导报, 2019, 33(24): 4147-4151.
[8] 李虎, 赵君文, 王超群, 郭安, 李恒奎, 戴光泽. 时效应力对7A04铝合金二级时效力学及剥落腐蚀性能的影响[J]. 材料导报, 2019, 33(12): 2025-2029.
[9] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[10] 谢飞, 李雪, 高四方, 王丹, 吴明. X80管线钢在含硫酸盐还原菌的土壤环境中的应力腐蚀开裂行为研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 69-77.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed