Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24138-24144    https://doi.org/10.11896/cldb.19110211
  金属与金属基复合材料 |
海洋干湿交替环境中HCO3-浓度对X100钢腐蚀行为的影响
荆婉婷, 吴明
辽宁石油化工大学石油天然气工程学院,抚顺113001
Effect of HCO3- on Corrosion Behaviour of X100 Steel in Marine Dry-wet Cycling Environment
JING Wanting, WU Ming
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
下载:  全 文 ( PDF ) ( 10457KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国南海海域油气资源的开发,海洋油气管道里程迅速增加。然而,严苛的海洋环境极易引起油气管线钢腐蚀,特别是在海洋CO2系统中,快速增长的CO2排放导致海洋系统中HCO3-和CO32-浓度增大,已成为影响海洋结构中金属材料腐蚀的重要因素之一。通过建立模拟海洋干湿交替加速腐蚀试验模型,提出薄液层中电化学测试和慢应变速率拉伸试验方法,测试干湿交替环境中不同HCO3-浓度下X100钢的腐蚀行为,利用SEM、XRD等方法表征试样表面腐蚀形貌和物相构成,揭示海洋干湿交替环境中HCO3-浓度变化对X100钢腐蚀机制的影响。研究结果表明,在模拟海洋干湿交替条件下,X100钢腐蚀行为随着HCO3-浓度增加呈现出先快速增长后缓慢增长的特征,其应力腐蚀敏感性随薄液层中HCO3-浓度增大而提高,断口形貌逐渐表现出脆性断裂特征;在HCO3-浓度较高的环境中,电化学腐蚀阴极反应受到抑制,但是在Bockris机制作用下,HCO3-离解反应为电化学阴极反应提供了额外的氢源,增大了试样的电化学腐蚀速率和应力腐蚀敏感性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
荆婉婷
吴明
关键词:  X100管线钢  海洋干湿交替环境  电化学腐蚀  应力腐蚀开裂  HCO3-  腐蚀机制    
Abstract: With the development of oil and gas resources in the South China Sea, the mileage of offshore pipeline has increased rapidly. However, the harsh marine environment causes corrosion of oil and gas pipeline steel, especially in marine CO2 systems. The rapid increase of CO2 emissions has led to HCO3- and CO32- concentrations in marine systems increased, and has become one of the important factors affected the corrosion of metallic materials in marine structures. In this paper, we had established a simulated dry-wet cycling accelerated corrosion test mo-del, and the electrochemical test and slow strain rate tensile test installations within the thin liquid layer were purposed, to test the X100 steels corrosion behavior in dry-wet cycling environments with different HCO3-. The corrosion morphology and phase composition of the sample surface were characterized using SEM and XRD methods, and revealed the effect of HCO3- concentration changes on the corrosion mechanism of X100 steel in the dry-wet cycling environment. The research results show that the corrosion rate of X100 steel showed a rapid increased and then a slow increased as the HCO3- concentration increases under simulated marine dry-wet cycling conditions. The stress corrosion sensitivity (SCC) increases with increasing HCO3- concentration in the thin liquid layer, and the fracture morphology gradually exhibits brittle fracture. The electrochemical corrosion cathode reaction is suppressed with the high HCO3- concentration, but under the action of the Bockris mechanism, the HCO3- dissociation reaction provides an additional hydrogen source for the electrochemical cathode reaction, and increasing the electrochemical corrosion rate and SCC of the sample.
Key words:  X100 steel    marine wet-dry cycling    electrochemical corrosion    stress corrosion cracking    HCO3-    corrosion mechanism
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TE988  
基金资助: 国家自然科学基金(51574147)
通讯作者:  lnpu2015@163.com   
作者简介:  荆婉婷,于2017年9月至今在辽宁石油化工大学学习,硕士研究生,主要从事油气管线钢腐蚀行为的研究。
吴明,辽宁石油化工大学,教授。1997年4月毕业于东北大学,获博士学位。2005年荣获辽宁省“五一”劳动奖章,2008年入选辽宁省新世纪百千万人才工程百人层次和国务院颁发的“政府特殊津贴”。以第一完成人获辽宁省科技进步一等奖2项。
引用本文:    
荆婉婷, 吴明. 海洋干湿交替环境中HCO3-浓度对X100钢腐蚀行为的影响[J]. 材料导报, 2020, 34(24): 24138-24144.
JING Wanting, WU Ming. Effect of HCO3- on Corrosion Behaviour of X100 Steel in Marine Dry-wet Cycling Environment. Materials Reports, 2020, 34(24): 24138-24144.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110211  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24138
1 Liu G X, Wu M, Jia F R, et al. Journal of Cleaner Production, 2018, 195, 593.
2 Liu G X, Wu M, Jia F R, et al. Journal of Cleaner Production, 2019, 209, 40.
3 Raven J A, Falkowski P G. Plant, Cell & Environment, 1999, 22(6), 741.
4 Xue F, Wei X, Dong J, et al. Journal of Materials Science & Technology, 2018, 34(8), 1349.
5 Eliyan F F, Alfantazi A. Corrosion Engineering, Science and Technology, 2015, 50(3), 178.
6 Liu Z, Gao X, Du L, et al. Applied Surface Science, 2018, 440, 974.
7 Eliyan F F, Mahdi E S, Alfantazi A. Corrosion Science, 2012, 58, 181.
8 Eliyan F F, Mohammadi F, Alfantazi A. Corrosion Science, 2012, 64, 37.
9 Eliyan F F, Alfantazi A. Materials Chemistry and Physics, 2013, 140(2-3), 508.
10 Han J, Carey J W, Zhang J. International Journal of Greenhouse Gas Control, 2011, 5(4), 777.
11 Han J, Zhang J, Carey J W. International Journal of Greenhouse Gas Control, 2011, 5(6), 1680.
12 Linter B R, Burstein G T. Corrosion Science, 1999, 41(1), 117.
13 Zhang G A, Cheng Y F. Electrochimica Acta, 2009, 55(1), 316.
14 Fu A Q, Cheng Y F. Corrosion Science, 2010, 52(7), 2511.
15 Huang H, Dong Z, Chen Z, et al. Corrosion Science, 2011, 53(4), 1230.
16 Li C, Ma Y, Li Y, et al. Corrosion Science, 2010, 52(11), 3677.
17 Helgeson H C. American Journal of Science, 1969, 267(7), 729.
18 Wang P, Anderko A, Young R D. Fluid Phase Equilibria, 2002, 203(1), 141.
19 Springer R D, Wang P, Anderko A. SPE Journal, 2015, 20(5), 1120.
20 Wright R F, Brand E R, Ziomek-Moroz M, et al. Electrochimica Acta, 2018, 290, 626.
21 Bockris J O M, Drazic D, Despic A R. Electrochimica Acta, 1961, 4(2), 325.
22 Hu S, Liu L, Cui Y, et al. Corrosion Science, 2019, 146, 202.
23 Pandarinathan V, Lepková K, Van Bronswijk W. Corrosion Science, 2014, 85, 26.
24 Bourdoiseau J A, Jeannin M, Sabot R, et al. Corrosion Science, 2008, 50(11), 3247.
25 Hanesch M. Geophysical Journal International, 2009, 177(3), 941.
[1] 魏乔苑, 李跃忠, 赵毛毛, 冉小兵. 水环境对控制棒驱动机构Ω焊缝母材应力腐蚀的影响[J]. 材料导报, 2020, 34(Z1): 462-465.
[2] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[3] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[4] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[5] 张建龙, 薛河, 崔英浩, 陈浩. 加工硬化对304不锈钢应力腐蚀裂纹裂尖力学性能的影响[J]. 材料导报, 2019, 33(24): 4147-4151.
[6] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[7] 张聪惠,王 婧,宋 薇,王 洋,赵 旭,王耀勉. 高能喷丸处理工业纯钛焊接接头在10%HCl溶液中的腐蚀行为[J]. 《材料导报》期刊社, 2018, 32(9): 1564-1570.
[8] 李欣琳,金国,康丽霞,庞学佳,曹蔚琦,王海斗,徐滨士,崔秀芳. 黄铜在酸碱盐腐蚀介质中的腐蚀研究[J]. 《材料导报》期刊社, 2018, 32(2): 228-233.
[9] 崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
[10] 陈超,张玉平,陈为为,程焕武,王鲁. 铝合金表面蓝色微弧氧化陶瓷膜的制备及性能研究*[J]. 材料导报编辑部, 2017, 31(10): 121-126.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed