Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2025-2029    https://doi.org/10.11896/cldb.18040225
  金属与金属基复合材料 |
时效应力对7A04铝合金二级时效力学及剥落腐蚀性能的影响
李虎1, 赵君文1,2, 王超群1, 郭安1, 李恒奎3, 戴光泽1,2
1 西南交通大学材料科学与工程学院,成都 610031
2 扬州丰泽轨道交通科技有限公司,扬州 225200
3 中车青岛四方机车车辆股份有限公司,青岛 266111
Effects of Aging Stress on the Mechanical Properties and Exfoliation CorrosionResistance of 7A04 Aluminum Alloy with Two-stage Aging
LI Hu1, ZHAO Junwen1,2, WANG Chaoqun1, GUO An1, LI Hengkui3, DAI Guangze1,2
1 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031
2 Yangzhou Fengze Rail Technologies Co. Ltd., Yangzhou 225200
3 CRRC Qingdao Sifang Co. Ltd., Qingdao 266111
下载:  全 文 ( PDF ) ( 3060KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过力学性能测试、XRD物相分析、拉伸断口形貌分析、剥落腐蚀性能评估等试验,研究了时效应力对7A04铝合金二级时效力学及剥落腐蚀性能的影响。结果表明:时效应力为100~300 MPa时,7A04铝合金的强度和硬度有所增加;当时效应力为200 MPa时,合金的RmRp0.2和布氏硬度分别达652.3 MPa、588.5 MPa和178HB,相比于无应力二级时效分别提高了4.47%、3.94%和5.95%,而塑性变化不大;随时效应力的增大,时效试样组织中MgZn2析出相含量增加,并且其断裂方式发生改变;适当的时效应力可降低7A04铝合金剥落腐蚀敏感性,时效应力为200 MPa时,合金抗剥落腐蚀性能最优,抗剥落腐蚀等级为EA。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李虎
赵君文
王超群
郭安
李恒奎
戴光泽
关键词:  7A04铝合金  时效应力  二级时效  剥落腐蚀性能    
Abstract: Effects of aging stress on the mechanical properties and exfoliation corrosion resistance of 7A04 aluminum alloy with two-stage aging were investigated by mechanical properties test, XRD analysis, tensile fracture surface analysis and exfoliation corrosion evaluation. The results indicated that the strength and hardness of 7A04 aluminum alloy increased with the aging stress of 100~300 MPa. Compared with no stress-aging condition, the tensile strength, yield strength and hardness of 7A04 aluminum alloy reached 652.3 MPa, 588.5 MPa and 178HB after aged with stress of 200 MPa, increased by 4.47%, 3.94% and 5.95% respectively, but the change of the elongation is insignificant. Additionally, with the increase of aging stress, the content of MgZn2 precipitates in the microstructure of the alloy increased, and the fracture mode of the alloy also changed. The suitable aging stress can reduce the exfoliation corrosion sensitivity of 7A04 aluminum alloy, and the alloy has the best corrosion resistance with the aging stress of 200 MPa, which reached the level of EA.
Key words:  7A04 aluminum alloy    aging stress    two-stage aging    exfoliation corrosion resistance
                    发布日期:  2019-05-31
ZTFLH:  O614.53+2  
  TQ567.8  
基金资助: 国家科技支撑计划项目(2015BAG12B01)
通讯作者:  swjtuzjw@swjtu.edu.cn   
作者简介:  李虎,2018年6月毕业于西南交通大学大学,获得工程硕士学位。于2015年9月至2018年6月在西南交通大学材料科学与工程学院学习,主要从事高强度铝合金应力时效热处理的研究。赵君文,博士,硕士研究生导师,中国金属学会会员,四川铸造学会会员,2009年于华中科技大学材料加工工程专业获得工学博士学位,同年到西南交通大学材料学院工作至今。2015年12月至2016年12月在澳大利亚RMIT大学AMP中心作访问学者。主要从事轻合金及复合材料的研究,重点研究金属半固态加工技术。在国内外重要期刊发表文章30多篇。
引用本文:    
李虎, 赵君文, 王超群, 郭安, 李恒奎, 戴光泽. 时效应力对7A04铝合金二级时效力学及剥落腐蚀性能的影响[J]. 材料导报, 2019, 33(12): 2025-2029.
LI Hu, ZHAO Junwen, WANG Chaoqun, GUO An, LI Hengkui, DAI Guangze. Effects of Aging Stress on the Mechanical Properties and Exfoliation CorrosionResistance of 7A04 Aluminum Alloy with Two-stage Aging. Materials Reports, 2019, 33(12): 2025-2029.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040225  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2025
1 Williams J C, Jr E A S. Acta Materialia, 2003, 51(19), 5775.
2 Rometsch P A, Zhang Y, Knight S. Transactions of Nonferrous Metals Society of China, 2014, 24(7), 2003.
3 Wu H P, Wang Z X, Ma Y L, et al. Journal of Chongqing University of Technology (Natural Science), 2017, 31(4), 59 (in Chinese).
吴海鹏, 王正曦, 麻彦龙, 等. 重庆理工大学学报(自然科学), 2017, 31(4), 59.
4 Heinz A, Haszler A, Keidel C, et al. Materials Science & Engineering A, 2000, 280(1), 102.
5 Pankade S B, Khedekar D S, Gogte C L. Procedia Manufacturing, 2018, 20, 53.
6 Cai B, Adams B L, Nelson T W. Acta Materialia, 2007, 55(5), 1543.
7 Peng F F, Kang F, Shu D Y, et al. Journal of Chongqing University of Technology (Natural Science), 2014, 28(10), 56 (in Chinese).
彭菲菲, 康凤, 舒大禹, 等. 重庆理工大学学报(自然科学), 2014, 28(10), 56.
8 Xu J Y, Pu J R. Hot Working Technology, 2015(8),212 (in Chinese).
徐君燕, 卜建荣.热加工工艺, 2015(8), 212.
9 Liu Y, Jiang D, Li B, et al. Materials & Design, 2014, 57(5), 79.
10Lin Y C, Jiang Y Q, Zhang X C, et al. Materials and Design, 2014, 61, 228.
11Cao S F, Pan Q L, Liu X Y, et al. The Chinese Journal of Nonferrous Metals, 2010, 20(8), 1513 (in Chinese).
曹素芳, 潘清林, 刘晓艳, 等.中国有色金属学报, 2010, 20(8), 1513.
12Guo W, Guo J Y, Wang J D, et al.Materials Science and Engineering A, 2015, 634, 167.
13Lin Y C, Jiang Y Q, Xia Y C, et al. Materials Science & Engineering A, 2014, 605, 192.
14Lin Y C, Jiang Y Q, Chen X M, et al. Materials Science and Enginee-ring A, 2013, 588, 3.
15Sha G, Cerezo A.Acta Materialia, 2004, 52(15), 4503.
16Du Z W, Sun Z M, Shao B L, et al. Materials Characterization, 2006, 56(2), 121.
17Xu T D, Li Q F, Yang S L. Journal of Iron and Steel Research, 2001, 13(4), 28 (in Chinese).
徐庭栋, 李庆芬, 杨尚林.钢铁研究学报, 2001, 13(4), 28.
18Najjar D, Magnin T, Warner T J.Materials Science and Engineering A, 1997, 238(2), 293.
[1] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed