Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2030-2034    https://doi.org/10.11896/cldb.18050184
  金属与金属基复合材料 |
铝铜异种材料搅拌摩擦焊接接头微观组织与性能
孟强1, 车倩颖2,3, 王快社2,3, 张坤1, 王文2,3, 黄丽颖2,3, 彭湃2,3, 乔柯2,3
1 北京赛福斯特技术有限公司,北京 101107
2 西安建筑科技大学冶金工程学院,西安 710055
3 功能材料加工国家地方联合工程研究中心,西安 710055
Microstructure and Mechanical Properties of Dissimilar Joint of Aluminium Alloy and Pure Copper by Friction Stir Welding
MENG Qiang1, CHE Qianying2,3, WANG Kuaishe2,3, ZHANG Kun1, WANG Wen2,3, HUANG Liying2,3, PENG Pai2,3, QIAO Ke2,3
1 Beijing FSW Technology Co., Ltd., Beijing 101107
2 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055
3 National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an 710055
下载:  全 文 ( PDF ) ( 6606KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用搅拌摩擦焊接(Friction stir welding,FSW)对6061-T6铝合金和紫铜异种金属进行了连接。研究结果表明,将紫铜置于后退侧、搅拌针向铝合金侧偏置0.5 mm时,可获得成型优良的接头。对接界面处,铝铜异种金属发生充分混合流动,在微区内形成了层片状交织结构。焊核区晶粒细化,接头内部形成了Al2Cu、AlCu和Al4Cu9金属间化合物,其形成机制为固态扩散。微观组织的均匀性和金属间化合物对样品显微硬度分布具有显著影响。铝合金侧的热影响区硬度值最低,呈现热软化效应。接头抗拉强度达到紫铜母材抗拉强度的75.5%,断裂位置位于铝侧热影响区,拉伸断口呈现韧脆混合断裂特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟强
车倩颖
王快社
张坤
王文
黄丽颖
彭湃
乔柯
关键词:  搅拌摩擦焊接  铝铜异种材料  微观组织  力学性能    
Abstract: The dissimilar joint of 6061-T6 aluminum alloy and pure copper were successfully carried out by friction stir welding (FSW) in this work. The results showed that high-quality welded joint can be obtained when the pure copper was placed at the retreating side, and stir pin was placed 0.5 mm offset the aluminum alloy. The regional lamellar structure was formed in terms of intensive metal flow of aluminum alloy and pure copper at the joint interface. In addition, the grains were refined in the nugget zone. Several intermetallic compounds like Al2Cu, AlCu and Al4Cu9 were generated in the joint, presenting a formation mechanism of solid-state diffusion. Additionally, the homogeneity of microstructure and intermetallic compounds exhibited a great impact on the distribution of microhardness. The lowest hardness was located at the heat affected zone of the aluminum alloy side, showing the effect of thermal softening. The ultimate tensile strength of the joint reached 75.5% of that of pure copper. The fracture position was located in the heat affected zone of aluminum alloy side, and the tensile fracture surface featured the mixed ductile-brittle fracture.
Key words:  friction stir welding    aluminum-copper dissimilar materials    microstructure    mechanical properties
                    发布日期:  2019-05-31
ZTFLH:  TG456  
基金资助: 国家自然科学基金(U1760201;51574192)
通讯作者:  mq_cfswt@sina.cn   
作者简介:  孟强,航空工业-北京赛福斯特技术有限公司总经理,中国航空制造技术研究院高级工程师,哈尔滨工业大学(威海)兼职教授。2009年毕业于北京科技大学获得博士学位。同年加入北京赛福斯特技术有限公司工作至今,主要从事航空用金属材料的搅拌摩擦焊接与加工。
引用本文:    
孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
MENG Qiang, CHE Qianying, WANG Kuaishe, ZHANG Kun, WANG Wen, HUANG Liying, PENG Pai, QIAO Ke. Microstructure and Mechanical Properties of Dissimilar Joint of Aluminium Alloy and Pure Copper by Friction Stir Welding. Materials Reports, 2019, 33(12): 2030-2034.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050184  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2030
1 Bhattacharya T K, Das H, Jana S S, et al. International Journal of Advanced Manufacturing Technology, 2016, 88(1-4), 1.
2 Zhang Q Z, Gong W B, Mao Y F, et al. Welding & Joining, 2014(7), 40(in Chinese).
张秋征, 宫文彪, 毛亚芬, 等. 焊接,2014(7), 40.
3 Mishra R S, Ma Z Y. Material and Science and Engineer: R, 2005, 50, 1.
4 Dawood H I, Mohammed K S, Rahmat A, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(9), 2856.
5 Tang J F, Shen M M, Li B H, et al. Light Alloy Fabrication Technology, 2017, 45(3), 35 (in Chinese).
唐金凤, 沈明明, 李宝华, 等. 轻合金加工技术, 2017, 45(3), 35.
6 Luo Y N, Huang H L. Welding Technology, 2015, 44(5), 17 (in Chinese).
罗应娜, 黄皞磊. 焊接技术, 2015, 44(5), 17.
7 Siddiquee A N, Pandey S. International Journal of Advanced Manufactu-ring Technology, 2014, 73(1-4), 479.
8 Kumar G H, Vishwanath B, Purohit R, et al. Materials Today Procee-dings, 2017, 4(4), 5336.
9 Xue P, Xiao B L, Wang D, et al. Science and Technology of Welding and Joining, 2011, 16(8), 657.
10Barekatain H, Kazeminezhad M, Kokabi A H. Journal of Materials Science & Technology, 2014, 30(8), 826.
11Galvão I, Oliveira J C, Loureiro A, et al. Intermetallics,2012, 22(3), 122.
12Bisadi H, Tavakoli A, Sangsaraki M T, et al. Materials & Design,2013, 43, 80.
13Akbari M, Abdi B R, Dadvand A. Science and Technology of Welding and Joining,2012, 17(7), 581.
14Mubiayi M P, Akinlabi E T. Materials Today: Proceedings,2017, 4(2), 533.
15Galvão I, Leal R M, Loureiro A, et al. Science and Technology of Wel-ding and Joining, 2010, 15(8), 654.
16Genevois C, Girard M, Huneau B, et al. Metallurgical and Materials Transactions A, 2011, 42(8), 2290.
17Ouyang J, Yarrapareddy E, Kovacevic R. Journal of Materials Processing Technology, 2006, 172(1), 110.
18Sinha V C, Kundu S, Chatterjee S. Perspectives in Science, 2016, 8, 543.
19Galvão I, Verdera D, Gesto D, et al. Journal of Materials Processing Technology, 2013, 213(11), 1920.
20Galvão I, Loureiro A, Verdera D, et al. Metallurgical and Materials Transactions A, 2012, 43(13), 5096.
21Zhang Q Z, Gong W B, Liu W. Transactions of Nonferrous Metals Society of China, 2015, 25(6), 1779.
22Tan C W, Jiang Z G, Li L Q, et al. Materials and Design, 2013, 51(5), 466.
23Krasnowski K, Hamilton C, Dymek S. Archives of Civil & Mechanical Engineering, 2015, 15(1), 133.
24Liu H J, Shen J J, Xie S, et al. Science and Technology of Welding and Joining, 2012, 17(2), 104.
25Xue P, Ni D R, Wang D, et al. Materials Science and Engineering: A, 2011, 528(13-14), 4683.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[12] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[13] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[14] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[15] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed