Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21236-21242    https://doi.org/10.11896/cldb.20050101
  金属与金属基复合材料 |
微弧氧化技术在铝合金腐蚀防护中的应用研究与发展
赵华星, 孙晓峰, 宋巍, 李占明, 李德民
陆军装甲兵学院装备保障与再制造系,北京 100072
Application Research and Development of Micro-arc Oxidation Technology in Corrosion Protection of Aluminum Alloy Equipment
ZHAO Huaxing, SUN Xiaofeng, SONG Wei, LI Zhanming, LI Demin
Department of Equipment Support and Remanufacturing, Academy of Army Armored Force , Beijing 100072, China
下载:  全 文 ( PDF ) ( 8348KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着轻型合金技术的发展,铝合金被广泛应用于船舶舰艇、装甲装备等领域,但随之带来的腐蚀问题不容小觑。资料显示,我国铝合金舰船的维修费用有近一半用于修复海水腐蚀损坏。铝合金微弧氧化是一种表面处理技术,兴起于上个世纪下半叶,通过在铝合金表面生成陶瓷层,能起到较好的防腐效果,同时对工件结构包容性大,在处理复杂零部件时有特殊优势。
铝合金经微弧氧化处理,能在表面原位生成以α-Al2O3和γ-Al2O3为主要成分的陶瓷层,具有较高的硬度、耐腐蚀性和耐磨性;但由于微弧氧化发生时,会产生瞬时高温高压,击穿原有自然氧化膜,在表面形成放电通道,因此微弧氧化膜层有大量孔洞。为提高微弧氧化膜层综合性能,更好地发挥腐蚀防护作用,学者们对微弧氧化过程以及膜层质量进行了大量研究。影响其质量的因素大致可概括为四个方面:电解液、电参数、氧化时间和添加剂。一般来说,电解液和添加剂对铝合金微弧氧化膜层成分有直接影响,合理使用添加剂对改善膜层表面孔隙率有积极意义,尤其是纳米颗粒添加剂,发挥第二相弥散强化作用,能有效提高膜层强度和硬度;而电参数和氧化时间对成膜效率、膜层厚度以及相结构都有影响,各种因素相互关联制约,共同影响微弧氧化陶瓷层的耐腐蚀效果和综合性能。
以美国为代表的发达国家从上世纪七十年代起就开始在工业中使用铝合金微弧氧化技术,俄罗斯对微弧氧化的理论研究比较深入,处于国际领先地位。但是微弧氧化过程瞬间完成,同时涉及到化学、电化学、等离子体等反应,机理十分复杂,至今仍没有统一的模型能够完美解释整个过程。我国对铝合金微弧氧化技术的研究始于上世纪九十年代,在理论积累以及工程应用领域均取得了一定成果,尤其是在一些小型铝合金工件的微弧氧化技术上,工艺流程已较为成熟。
本文归纳了铝合金微弧氧化膜层腐蚀防护机理,对影响铝合金微弧氧化膜层防腐性能的因素进行了梳理讨论,并对铝合金微弧氧化技术发展中的问题和前景进行了总结和展望,以期为研究人员的进一步研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵华星
孙晓峰
宋巍
李占明
李德民
关键词:  微弧氧化  铝合金  防腐    
Abstract: To meet the development of light alloy technology, more and more aluminum alloy materials have been used on the ships and armored equipments. However, the corrosion problem is very serious. Data shows that nearly half of the maintenance cost of aluminum ships is used to repair corrosion damage in our country. The micro-arc oxidation(MAO) of aluminum alloy is a surface treatment technology which originated in the late last century. By generating ceramic layer on the surface, aluminum alloy gets a better anti-corrosion effect. This technology has special advantages when dealing with complex parts and components.
The MAO coatings composed mainly of α-Al2O3 and γ-Al2O3 on the surface of aluminum alloy, which has high hardness, corrosion resistance and wear resistance. But due to the effect of high pressure breakdown, the aluminum alloy surface formed many discharge channel, causing a large number of holes in the film. In order to improve its corrosion protection effect, scholars have done a lot of research. The factors affecting corrosion resistance can be summarized into four aspects: electrolyte, electrical parameters, oxidation time and additives. Generally speaking, electrolytes and additives have a direct effect on the composition of MAO coatings. Appropriate additives can improve the porosity of film, especially the nanoparticles additives can improve the hardness and strength through the second phase dispersion strengthening mechanism. In addition, the electrical parameters and oxidation time have influences on the film forming efficiency, film thickness and phase structure. The corrosion resis-tance and comprehensive properties of MAO coatings are influenced by the interaction of all the factors.
Developed countries represented by the United States have begun to use aluminum alloy micro-arc oxidation technology in industry since the 1970s. Russia's theoretical research is relatively in-depth and is in a leading position in the world. However, micro-arc oxidation is completed instantly and involves chemistry, electrochemistry, plasma and other reactions. The mechanism is very complicated and there is still no unified mo-del can explain perfectly. Research in our country began in the 1990s, and some achievements have been made in theoretical accumulation and engineering application, especially in some small aluminum alloy workpieces.
In order to provide a reference for further research, this paper summarizes the corrosion protection mechanism of MAO coatings, combs and discusses the factors affecting it's corrosion resistance, and prospects the development of this technology.
Key words:  micro-arc oxidation    aluminum alloy    corrosion protection
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TG174  
通讯作者:  sxfll9999@126.com; songwei9305@sohu.com   
作者简介:  赵华星,工学学士。现为陆军装甲兵学院硕士研究生,在孙晓峰副教授的指导下进行研究。目前主要研究领域为铝合金防腐。
孙晓峰,陆军装甲兵学院副教授,中国机械工程学会表面工程分会委员及青工委副主任委员。主持武器装备预研项目、重点基金项目、军内科研项目等30余项,发表学术论文60余篇。申请发明专利20余项,授权10余项。荣获军队科技进步二等奖4项、三等奖3项。
宋巍,陆军装甲兵学院副研究员,1982年出生,硕士,主要研究方向为材料表面工程技术。
引用本文:    
赵华星, 孙晓峰, 宋巍, 李占明, 李德民. 微弧氧化技术在铝合金腐蚀防护中的应用研究与发展[J]. 材料导报, 2021, 35(21): 21236-21242.
ZHAO Huaxing, SUN Xiaofeng, SONG Wei, LI Zhanming, LI Demin. Application Research and Development of Micro-arc Oxidation Technology in Corrosion Protection of Aluminum Alloy Equipment. Materials Reports, 2021, 35(21): 21236-21242.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050101  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21236
1 Shi J, Qu Y P.Surface Technology, 2011, 040(1), 56 (in Chinese).
石娇, 曲彦平. 表面技术, 2011, 040(1), 56.
2 Yang H, Li L X, Wang Q D, et al.Chinese Journal of Mechanical Engineering, 2010, 46(12), 31 (in Chinese).
杨合, 李落星, 王渠东, 等. 机械工程学报, 2010, 46(12), 31.
3 Zhu Z F.Technology of anodic oxidation and surface treatment on aluminum alloys, Chemical Industry Press, China, 2010 (in Chinese).
朱祖芳. 铝合金阳极氧化与表面处理技术, 化学工业出版社, 2010.
4 Zhou L L. The study of anode oxidation process and corrosion resistance of anodic oxidation film of Al-4%Si alloy.Master's Thesis, Shenyang University of Technology, China, 2014 (in Chinese).
周璐璐. Al-4%Si合金阳极氧化工艺及耐腐蚀性研究. 硕士学位论文, 沈阳工业大学, 2014.
5 Güntherschulze A. Betz H. Zeitschrift für Physik, 1932, 73(9-10), 580.
6 Güntherschulze A. Betz H.Zeitschrift für Physik, 1934, 91(1-2), 70.
7 Van T B, Brown S D, Wirtz G P.American Ceramic Society Bulletin, 1977, 56, 6.
8 Xue W B, Deng Z W, Lai Y C, et al.Heat Treatment of Metals, 2000(1), 1 (in Chinese).
薛文斌, 邓志威, 来永春, 等. 金属热处理, 2000(1), 1.
9 Vijh A K. Corrosion Science, 1971, 11(6), 411.
10 Van T B, Brown S D, Wirtz G P.American Ceramic Society Bulletin, 1977, 56, 6.
11 Albella J M, Montero I, J. M. Martínez-Duart. Cheminform, 1984, 131(5), 1101.
12 Krysmann W, Kurze P, Dittrich K H, et al. Crystal Research and Technology, 1984, 19(7), 973.
13 Yerokhin A L, Nie X, Leyland A, et al.Surface and Coatings Technology, 1999, 122(2-3), 73.
14 Chen Y J, Feng S J, Shao Z S, et al.Materials Reports, 2010, 24(9), 136 (in Chinese).
陈妍君, 冯长杰, 邵志松, 等. 材料导报, 2010, 24(9), 136.
15 Duan G W, Gao X J, Man H, et al.Ordnance Material Science and Engineering, 2010, 33(5), 102 (in Chinese).
段关文, 高晓菊, 满红, 等. 兵器材料科学与工程, 2010, 33(5), 102.
16 Xue W, Wang C, Chen R, et al.Materials Letters, 2002, 52(6), 435.
17 Zhong T S, Jiang B L, Li J M.Electroplating & Finishing, 2005, 24(6), 47 (in Chinese).
钟涛生, 蒋百灵, 李均明. 电镀与涂饰, 2005, 24(6), 47.
18 Liu F L, Luo G X.Materials Protection, 1998, 31(3), 22 (in Chinese).
刘凤岭, 骆更新. 材料保护, 1998, 31(3), 22.
19 Mondolfo L F. Microstructure and properties of aluminum alloy, Metallurgical Industry Press, China, 1988 (in Chinese).
L.F.蒙多尔福. 铝合金的组织与性能, 冶金工业出版社, 1988.
20 Zhang Q B, Liu J X, Helian J F.Pipeline Technology and Equipment, 2004 (5), 38 (in Chinese).
张其滨, 刘金霞, 赫连建峰. 管道技术与设备, 2004 (5), 38.
21 Wang J H. Study of micro-arc oxidation technology and ceramic coating forming mechanism.Master's Thesis, Kunming University of Science and Technology, China, 2014 (in Chinese).
王军华. 微弧氧化工艺及其成膜机理研究. 硕士学位论文, 昆明理工大学, 2014.
22 Cao C N.Chinese Journal of Nature, 1983, 6(4), 266 (in Chinese).
曹楚南. 自然杂志, 1983, 6(4), 266.
23 Miao J G. Study of the microstructure and properties of ceramic coatings prepared by micro-arc oxidation on surface of 7075 super-hard aluminum alloy. Ph.D. Thesis,Wuhan University of Science and Technology, China, 2013 (in Chinese).
苗景国. 超硬铝合金7075微弧氧化陶瓷层的微结构及性能研究. 博士学位论文, 武汉科技大学, 2013.
24 Yan Y, Han Y, Li D, et al.Applied Surface Science, 2010, 256(21), 6359.
25 Chen J, Xu J Y, Gao C, et al.Materials Reports, 2011, 25(15), 107 (in Chinese).
陈静, 徐晋勇, 高成, 等. 材料导报, 2011, 25(15), 107.
26 Song R G.Journal of Materials Engineering, 2019, 047(3), 50 (in Chinese).
宋仁国. 材料工程, 2019, 047(3), 50.
27 Lv X, Cao L, Wan Y, et al.Materials Research Express, 2019, 6(8), 086421.
28 Zhuang J J, Song R G, Xiang N, et al.Corrosion Science and Protection Technology, 2017, 29(5), 492 (in Chinese).
庄俊杰, 宋仁国, 项南, 等. 腐蚀科学与防护技术, 2017, 29(5), 492.
29 Wang H M, Yin Y L, Du J, et al. China Surface Engineering, 2016, 29(5), 109 (in Chinese).
王红美, 尹艳丽, 杜军, 等. 中国表面工程, 2016, 29(5), 109.
30 Zhao J, Song R G, Li H X, et al.Transactions of Materials and Heat Treatment, 2010, (4), 128 (in Chinese).
赵坚, 宋仁国, 李红霞, 等. 材料热处理学报, 2010, (4), 128.
31 Dehnavi V, Shoesmith D W, Luan B L, et al.Materials Chemistry and Physics, 2015, 161, 49.
32 Jung Y C, Shin K R, Ko Y G, et al.Journal of Alloys and Compounds, 2014, 586, S548.
33 Shen Y, Sahoo P K, Pan Y.Marine Technology Society Journal, 2017, 51(3), 16.
34 Shen Y, Liu G X, Xie R.Modern Manufacturing Engineering, 2019, 461(2), 71 (in Chinese).
沈雁, 刘桂香, 谢荣. 现代制造工程, 2019, 461(2), 71.
35 Liu R M, Guo F, Li P F.Transactions of Materials and Heat Treatment, 2008, 29(1), 137 (in Chinese).
刘荣明, 郭锋, 李鹏飞. 材料热处理学报, 2008, 29(1), 137.
36 Xiang N, Song R, Zhuang J, et al.Transactions of Nonferrous Metals So-ciety of China, 2016, 26(3), 806.
37 Zhao J, Song R G, Li H X. In: National Youth Conference on Tribology and Industrial Application, Wuhan, 2008, pp.254 (in Chinese).
赵坚, 宋仁国, 李红霞. 2008全国青年摩擦学与表面保护学术会议, 武汉,2008, pp. 254.
38 Krishna L R, Somaraju K R C, Sundararajan G. Surface and Coatings Technology, 2003, 163, 484.
39 Yang J, Zhou H L, Wang J H, et al.Electromachining & Mould, 2013, (3), 26 (in Chinese).
杨靖, 周慧玲, 王军华, 等. 电加工与模具, 2013, (03), 30.
40 Zhou Y, Jiang Y M, Zhou J.Materials Protection, 2012, 45(1), 33 (in Chinese).
周雅, 江溢民, 周佳. 材料保护, 2012, 45(1), 33.
41 Chen X D, Cai Q Z, Yin L S.Special-cast and Non-ferrous Alloys, 2011, 31(7), 671 (in Chinese).
陈喜娣, 蔡启舟, 尹荔松. 特种铸造及有色合金, 2011, 31(7), 671.
42 Jiang B L, Wu G J.Transactions of Materials and Heat Treatment, 2002, 23(1), 5 (in Chinese).
蒋百灵, 吴国建. 材料热处理学报, 2002, 23(1), 5.
43 Zhai M, Jiang B L, Liu D J.Materials Protection, 2011, 44(6), 11 (in Chinese).
翟敏, 蒋百灵, 刘东杰. 材料保护, 2011, 44(6), 11.
44 Li S, Liu Y H, Pang L. Materials Science and Technology, 2008, 16(2), 287 (in Chinese).
李颂, 刘耀辉, 庞磊. 材料科学与工艺, 2008, 16(2), 287.
45 Guo M Q, Wang C L, Liu M, et al.Equipment Environmental Enginee-ring, 2008, 5(5), 38 (in Chinese).
郭孟秋, 王长亮, 刘明, 等. 装备环境工程, 2008, 5(5), 38.
46 Cui S H, Han J M, Li W J, et al. Journal of Aeronautical Materials, 2006, 26(2), 20 (in Chinese).
崔世海, 韩建民, 李卫京, 等. 航空材料学报, 2006, 26(2), 20.
47 Liu Y, Li X J, Gong Z P.Surface Technology, 2013, 42(2), 53 (in Chinese).
刘元, 李兴俊, 龚正朋. 表面技术, 2013, 42(2), 53.
48 Li Z, Cai Z, Cui Y, et al.Wear, 2019, 426, 285.
49 Wu Z D, Jiang Z H, Yao Z P, et al.Journal of Inorganic Materials, 2007, 22(3), 555 (in Chinese).
吴振东, 姜兆华, 姚忠平, 等. 无机材料学报, 2007, 22(3), 555.
50 Zhao D S, Niu Z W, Liu H F.Electroplating & Finishing, 2012, 31(9), 25 (in Chinese).
赵东山, 牛宗伟, 刘洪福. 电镀与涂饰, 2012, 31(9), 25.
51 Li Z S, Wu H L, Pan F S, et al.Journal of Aeronautical Materials, 2009, 29(3), 23 (in Chinese).
李忠盛, 吴护林, 潘复生, 等. 航空材料学报, 2009, 29(3), 23.
52 Xiao X L, Chen X C, Kuang M, et al.Ordnance Material Science and Engineering, 2015, 38(3), 55 (in Chinese).
肖晓玲, 陈兴驰, 况敏, 等. 兵器材料科学与工程, 2015, 38(3), 55.
53 Chen X, Liao D, Zhang D, et al.International Journal of Electrochemcial Science, 2020, 15, 710.
54 Chen Q, Jiang Z, Tang S, et al.Applied Surface Science, 2017, 423, 939.
55 Xu X H, Dong H X, Chen L Y.Light Alloy Fabrication Technology, 2019(9), 32 (in Chinese).
徐新华, 董虹星, 陈丽英. 轻合金加工技术, 2019(9), 32.
56 Yang W, Xu D P, Wang J L, et al.Surface Engineering, 2016, 1.
57 Suo X B, Ma S N, Qiu J, et al.Journal of Aeronautical Materials, 2009, 29(6), 66 (in Chinese).
索相波, 马世宁, 邱骥, 等. 航空材料学报, 2009, 29(6), 66.
58 Wang H M, Shuai G, Yin Y L, et al.Materials Reports, 2016, 30(S2), 262 (in Chinese).
王红美, 帅刚, 尹艳丽, 等. 材料导报, 2016, 30(S2), 262.
59 Huang D. Effects of the mixed additives in the silicate system on properties of micro-arc oxidation coatings formed on aluminum alloy. Master's Thesis,Guizhou University, China, 2015 (in Chinese).
黄丹. 硅酸盐体系下混合添加剂对铝合金微弧氧化膜层性能的影响. 硕士学位论文, 贵州大学, 2015.
60 Wu D F, Zhang X Y, Zhou X S, et al. Journal of Functional Materials, 2013, 44(17), 2559 (in Chinese).
吴德凤, 张晓燕, 周小淞, 等.功能材料, 2013, 44(17), 2559.
[1] 于芳, 晁代义, 邢雷, 王欣, 黄同瑊, 王向杰. 单级时效工艺对7075铝合金包覆薄板力学性能的影响[J]. 材料导报, 2021, 35(Z1): 411-413.
[2] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[3] 秦芳诚, 齐会萍, 李永堂, 刘崇宇, 亓海全, 康跃华. 铝合金环形零件形/性一体化制造技术[J]. 材料导报, 2021, 35(9): 9049-9058.
[4] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[5] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[6] 朱振宇, 涂浩, 吴长军, 彭浩平, 王建华, 苏旭平. 熔铸工艺对2618铝合金中难溶相尺寸与分布的影响[J]. 材料导报, 2021, 35(4): 4129-4133.
[7] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[8] 秦丰, 李睿, 张春波, 周军, 赵衍华. 铝/钢异种金属轴向摩擦焊研究现状[J]. 材料导报, 2021, 35(21): 21228-21235.
[9] 杨海峰, 赵洪运, 许欣欣, 孙广达, 周利, 赵慧慧, 刘会杰. 静轴肩搅拌摩擦焊2A14-T4铝合金T形接头的组织和性能[J]. 材料导报, 2021, 35(20): 20045-20051.
[10] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[11] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[12] 丁亚茹, 陈芙蓉, 杨帆, 贾翠玲. 响应面法分析7075铝合金激光焊接参数对焊接质量的影响规律[J]. 材料导报, 2021, 35(2): 2103-2108.
[13] 崔庆贺, 马琳, 周长壮, 梁金第, 宋雨键. 硅酸盐玻璃/铝合金异种材料连接综述[J]. 材料导报, 2021, 35(15): 15107-15114.
[14] 牛永胜, 姚夏妍, 李银丽, 汪友元, 李彦龙. 铝合金表面铈基转化膜研究进展[J]. 材料导报, 2021, 35(15): 15169-15174.
[15] 赵帆, 何颖, 张志豪. 消除7136铝合金固溶热处理粗晶环的新方法:应变固溶[J]. 材料导报, 2021, 35(14): 14079-14083.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed