Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20068-20075    https://doi.org/10.11896/cldb.20080173
  金属与金属基复合材料 |
基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究
韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊
桂林理工大学化学与生物工程学院,电磁化学功能物质广西区重点实验室,桂林 541004
Research on Preparation of Superhydrophobic Composite Coating Based on MOFs Material and Its Anti-corrosion on Carbon Steel
WEI Wenchang, LIU Zheng, WEI Runzhi, DIAO Na, LYU YijuGuangxi
Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, School of Chemical and Bioengineering, Guilin University of Technology, Guilin 541004, China
下载:  全 文 ( PDF ) ( 9496KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用三乙氧基-1H,1H,2H,2H-十三氟代正辛基硅烷(POTS)对合成的配合物Cu-MOF和Zn-MOF进行疏水性修饰,制备出Cu-MOF/POTS、Zn-MOF/POTS材料,然后利用红外光谱(FTIR)、扫描电镜(SEM)和能谱(EDS)等方法对其进行结构表征,并对其进行疏水性能测试。结果表明,经POTS修饰后的Cu-MOF和Zn-MOF均从原来的亲水性转变为疏水性。将Cu-MOF/POTS、Zn-MOF/POTS作为防腐助剂添加到环氧树脂中制备出Cu-MOF/POTS/EP、Zn-MOF/POTS/EP复合涂层,它们表现出超疏水的效果,水接触角分别达到154.8°、153.1°,且涂层耐久性和耐水性试验均表明它们具有良好的耐久性能和耐水性能。将所制备的涂层浸在3.5% (质量分数)NaCl腐蚀溶液中进行电化学测试,极化曲线与电化学阻抗结果均表明Cu-MOF/POTS/EP、Zn-MOF/POTS/EP复合涂层对水分子和腐蚀介质起到协同阻隔和屏蔽作用,展现出很好的疏水和防腐蚀性能,防腐蚀效率分别达到90.06%、88.84%,能有效保护碳钢不受腐蚀,与扫描电镜分析结果相符。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韦文厂
刘峥
魏润芝
刁娜
吕奕菊
关键词:  金属有机框架材料  防腐蚀  碳钢  超疏水  涂层    
Abstract: The synthesized complexes Cu-MOF and Zn-MOF were hydrophobically modified by 1H,1H,2H,2H-Perfluorooctyltriethoxysilane (POTS) to prepare Cu-MOF/POTS and Zn-MOF/POTS materials, their structure were characterized and confirmed by Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy spectroscopy (EDS), and their hydrophobic properties are tested. The hydrophobic performance test results showed that the Cu-MOF and Zn-MOF modified by POTS have changed from the original hydrophilicity to the hydrophobicity. In addition, Cu-MOF/POTS, Zn-MOF/POTS are added as anticorrosion additives to epoxy resin to prepare Cu-MOF/POTS/EP, Zn-MOF/POTS/EP composite coatings, which exhibited t super hydrophobic effect, the water contact angle reached 154.8° and 153.1°, respectively. The coating durability and water resistance test showed that those composite coatings have good durability and water resistance. The prepared coatings were immersed in 3.5wt% NaCl corrosion solution for electrochemical test, and the results all showed that the Cu-MOF/POTS/EP, Zn-MOF/POTS/EP composite coatings have a synergistic barrier and shielding effect on the water separator and the corrosive medium, exhibited good hydrophobic and anti-corrosion performance, and the anti-corrosion efficiency are respectively reached 90.06% and 88.84%, it can effectively protect carbon steel from corrosive media, which was consistent with the results of scanning electron microscopy analysis of the coatings.
Key words:  MOFs    anti-corrosion    carbon steel    superhydrophobic    coating
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TG172.8  
基金资助: 广西自然科学基金(2016GXNSFAA380109;2018GXNSFAA294042)
通讯作者:  lisa4.6@163.com;league051@163.com   
作者简介:  韦文厂,桂林理工大学硕士研究生。主要从事有机合成与应用研究。
刘峥,教授,硕士、博士研究生导师,现任教于桂林理工大学化学与生物工程学院。2006年毕业于湘潭大学,获博士学位。主要研究应用有机合成新技术。近年来,发表科研论文90多篇,其中SCI、EI收录近60篇。
吕奕菊,博士。现在桂林理工大学化学与生物工程学院从事教学和科研工作。2014年毕业于广西大学,获博士学位。主要研究化工冶金与新材料制备技术。
引用本文:    
韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
WEI Wenchang, LIU Zheng, WEI Runzhi, DIAO Na, LYU YijuGuangxi. Research on Preparation of Superhydrophobic Composite Coating Based on MOFs Material and Its Anti-corrosion on Carbon Steel. Materials Reports, 2021, 35(20): 20068-20075.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080173  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20068
1 Cruz J, Martnez R, Genesca J, et al. Journal of Electroanalytical Chemistry,2004,566(1),111.
2 Ye Y W, Yang D P, Chen H, et al. Journal of Hazardous Materials,2020,381,121019.
3 Priya R, Ningshen S. Journal of Materials Engineering and Performance,2019,28(9),5902.
4 Salazar-Bravo P, Ngel-Lopez D D, Torres-Huerta A M, et al. Progress in Organic Coatings,2019,135,51.
5 Zhao B, Jia R P. Progress in Organic Coatings,2019,135C,440.
6 Krishnan S. Progress in Organic Coatings,2006,57(4),383.
7 Suleiman R K. Journal of Adhesion Science and Technology,2020,34(12),1315.
8 Zhang M, Ma L, Wang L L, et al. ACS Applied Materials and Interfaces,2018,10(3),2259.
9 Zhang Wang, Hu Yingli, Ge Jin, et al. Journal of the American Chemical Society,2014,136(49),16978.
10 Azimirad R, Safa S. Pramana-Journal of Physics,2016,86(3),653.
11 Zhou C L, Li Z, Li J, et al. Chemical Engineering Journal,2020,385,123835.
12 Cao K Y, Yu Z X, Yin D. Progress in Organic Coatings,2019,135,613.
13 Hu J, Liu Y, Liu J, et al. AIChE Journal,2020,66(2),UNSP e16835.
14 Irigoyen M, Aragon E, Perrin F X, et al. Progress in Organic Coatings,2007,59(3),259.
15 Li X L, Liu M, Jiang J C, et al. Journal of Chongqing University of Technology(Natural Science),2020,34(2),40(in Chinese).
李旭玲,刘梦,姜久春,等.重庆理工大学学报(自然科学),2020,34(2),40.
16 Dzulkafli H H, Ahmad F, Ullah S, et al. Applied Clay Science,2017,146,350.
17 Hamidreza P, Nezamaddin M, Yaghoub H, et al. Environmental Science and Pollution Research,2018,25(25),24746.
18 Zhang Z Z, Ge B, Men X H, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2016,490,182.
19 Good R J. Journal of the American Chemical Society,1952,74(20),5041.
20 Athauda T J, Ozer R R. Cellulose,2012,19(3),1031.
21 Bai Y, Zhang H, Shao Y, et al. Coatings,2021,11(2),116.
22 Ning Y J, Zhu Z R, Cao W W, et al. Journal of Materials Science,2021,56(1),1.
23 Frederic M, Wanderson O S, Luis C, et al. ChemPhysChem,2019,20(22),3106.
24 Singh D K, Kumar S, Udayabhanu G, et al. Journal of Molecular Liquids,2016,216,738.
25 Solomon M M, Umoren S A. Journal of Environmental Chemical Enginee-ring,2015,3(3),1812.
26 Wu Y M, Zhao W J, Qian Y J, et al. Carbon,2020,159,292.
27 Wang X, Jing C, Chen Y X, et al. Journal of Magnesium and Alloys,2020,8(1),291.
28 Zhang M, Ma L, Wang L L, et al. ACS Applied Materials & Interfaces,2018,10(3),2259.
29 Li W J, Ren B H, Chen Y, et al. ACS Applied Materials and Interfaces,2018,10(43),37529.
30 Wang Y F, Qian C, Yang Z, et al. Materials Reports B: Research Papers,2019,33(2),699(in Chinese).
王业飞,钱程,杨震,等.材料导报:研究篇,2019,33(2),699.
31 Zhang C L, Fei J M, Guo L, et al. Ceramics International,2018,44(8),8818.
32 Obot I B, Madhankumar A. Journal of Industrial and Engineering Che-mistry,2015,22,105.
33 Wei W C, Liu Z, Liang C X, et al. RSC Advances,2020,10(30),17816.
34 Xiao Y, Ding L L, Liao W J, et al. Materials Review,2016,30(S1),217(in Chinese).
肖扬,丁柳柳,廖文俊,等.材料导报,2016,30(S1),217.
35 Liang C X, Liu Z, Liang Q Q, et al. Journal of Molecular Liquids,2018,277,330.
36 Esmaeilpour M, Niroumand B, Monshi A, et al. Soft Materials,2015,13(3),144.
[1] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[2] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[3] 倪嘉, 史昆, 薛松海, 赵军, 刘时兵, 刘鸿羽, 李重阳. 航空发动机用热障涂层陶瓷材料的发展现状及展望[J]. 材料导报, 2021, 35(Z1): 163-168.
[4] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[5] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[6] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[7] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[8] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[9] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[10] 张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
[11] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[12] 杨小军, 池作和, 王进卿, 潜培豪, 王广鑫, 王杰. 玻璃粉对聚硅氮烷陶瓷涂层厚度及孔隙的影响[J]. 材料导报, 2021, 35(6): 6060-6064.
[13] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[14] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[15] 张朝磊, 邵洙浩, 李戬, 王文军, 蒋波. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed