Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20090371-5    https://doi.org/10.11896/cldb.20090371
  高分子与聚合物基复合材料 |
基于无壁型微脉管的光能损伤自修复复合材料
李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱
华东交通大学机电与车辆工程学院, 南昌 330013
Light-energy Self-healing Composites Based on Wall-less Microvasculature
LI Peng, DU Yibo, HUANG Peiwei, DING Ying, LIU Genzhu
School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 3088KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对损伤自修复研究领域中有壁型载体与双组分修复体系存在的力学兼容性不佳、自修复实时性差的不足,提出了基于无壁型微脉管的光能损伤自修复复合材料研究,旨在保证微脉管载体与材料力学兼容性的条件下,以实现对复合材料光能损伤的实时自修复。研究首先以管密度、沿程水头损失和微脉管体积分数为目标函数,采用非劣分层遗传算法对微脉管的直径和数量进行优化;其次,采用真空辅助树脂传递模塑成型工艺和失模法,研制无壁型微脉管,并以单组分的短波光固化粘结剂作为光修复剂,设计了自修复复合材料;最后,以疲劳寿命作为评价自修复复合材料的力学兼容性和光修复性能指标。结果表明:通过载体的拓扑结构优化和无壁型设计,可降低微脉管埋入对材料原始性能的影响(平均疲劳寿命下降6.19%,平均最大静拉力下降4.48%),有助于改善材料的力学兼容性;光能损伤自修复不仅可保证理想的损伤自修复性能(平均疲劳寿命提高37.86%),而且具有良好的实时性,可快速完成损伤自修复(修复时间短于11.62 min)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李鹏
杜艺博
黄培炜
丁瀛
刘根柱
关键词:  自修复  非劣分层遗传算法  无壁型微脉管  光修复剂  疲劳寿命    
Abstract: In the field of damage self-healing research, the wall-type carrier and the two-component repair system have the lack of poor mechanical compatibility and poor real-time self-healing. Based on the wall-less microvasculature, the research on the light-energy self-healing composite material is proposed in order to realize the real-time light-energy self-healing of composite material under the condition of ensuring the compatibility between the microvascular carrier and the mechanics of materials. Firstly, the diameter and number of microvasculature are optimized by using non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) with the objective functions of tube density, water head loss and percentage of microvascular volume. Secondly, vacuum-assisted resin transfer molding process and mold loss method are used to develop wall-less microvasculature, and single-component short-wave photocuring binder is used as light-repairing agent to design self-healing composite material. Finally, the fatigue life is used to evaluate the mechanical compatibility and light repair properties of self-healing composites. The result shows that through the topological structure optimization and the design of wall-less carrier, the effect of microvascular embedding on the original properties of the material can be reduced (the average fatigue life decreased by 6.19%, and the average maximum static tension decreased by 4.48%), and it is helpful to improve the mechanical compatibility; light energy self-healing can not only ensure the ideal self-healing performance (average fatigue life increased by 37.86%), but also have good real-time performance, and it can quickly complete damage self-healing (repair time is less than 11.62 min).
Key words:  self-healing    non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ)    wall-less microvasculature    light-repairing agent    fatigue life
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TB381  
  TB34  
基金资助: 国家自然科学基金(51365012;52165016)
通讯作者:  ecjtulipeng@126.com20090371-1   
作者简介:  李鹏,2009年毕业于南京航空航天大学,获工学博士学位。现任教于华东交通大学机电工程学院,副教授,硕导。主要研究方向为智能结构损伤自修复与健康监测。发表SCI论文6篇,授权发明专利5项。
引用本文:    
李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱. 基于无壁型微脉管的光能损伤自修复复合材料[J]. 材料导报, 2022, 36(2): 20090371-5.
LI Peng, DU Yibo, HUANG Peiwei, DING Ying, LIU Genzhu. Light-energy Self-healing Composites Based on Wall-less Microvasculature. Materials Reports, 2022, 36(2): 20090371-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090371  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20090371
1 Mauldin T C, Kessler M R. Materials Reviews, 2010, 55, 317.
2 Ladani R B, Nguyen A T T, Chun H, et al. Composites Part A: Applied Science And Manufacturing, 2019, 120,21.
3 Tan M H Y, Najafi A R, Pety S J, et al. International Journal of Heat and Mass Transfer, 2016, 103, 594.
4 Zhu D Y, Rong M Z, Zhang M Q. Progress in Polymer Science, 2015, 49, 175.
5 Soghrati S, Aragón A M, Geubelle P H. Structural and Multidisciplinary Optimization, 2014, 49, 643.
6 Toohey K S, Sottos N R, Lewis J A, et al. Nature Materials, 2007, 6, 581.
7 Kozola B D, Shipton L A, Natrajan V K, et al. Journal of Intelligent Material Systems and Structures, 2010, 21, 1147.
8 Kozola B D. Polymer, 2010, 21, 1147.
9 Aragón A M, Wayer J K. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 4399.
10 Aragón A M, Saksena R, Kozola B D, et al. Journal of Computational Physics, 2013, 233, 132.
11 Williams H R, Trask R S, Bond I P. Composites Science and Technology, 2008, 68, 3171.
12 Trask R S, Williams H R, Bond I P. Bioinspiration & Biomimetics, 2007, 2, 1.
13 Huang H, Talreja R. Composites Science and Technology, 2005, 65, 1964.
14 Wu X F, Rahman A, Zhou Z, et al. Journal of Applied Polymer Science, 2013, 129, 1383.
15 Huang J H, Kim J, Agrawal N, et al. Advanced Materials, 2009, 21, 3567.
16 Toohey K S, Sottos N R, White S R. Experimental Mechanics, 2009, 49, 707.
17 Toohey K S, Hansen C J, Lewis J A, et al. Advanced Functional Mate-rials, 2009, 19, 1399.
18 Hansen C J, Wu W, Toohey K S, et al. Advanced Materials, 2009, 21, 4143.
19 Pang J W C, Bond I P. Composites Science and Technology, 2005, 65 1791.
20 Hamilton A R, Sottos N R, White S R. Advanced Materials, 2010, 22, 5159.
21 Hamilton A R, Sottos N R, White S R. Journal of the Royal Society Interface, 2012, 9, 1020.
22 Hamilton A R, Sottos N R, White S R. Polymer, 2012, 53, 5575.
23 Deb K, Pratap A, Agarwal S, et al. Ieee Transactions on Evolutionary Computation, 2002, 6, 182.
24 Li P, Liu G Z, Liu Y, et al. Science Progress, 2020, 103, 36850419883541.
25 Li P, Liu Y, Zou T, et al. Advances in Mechanical Engineering, 2017, 9, 168781401770817.
26 Patrick J F, Hart K R, Krull B P, et al. Advanced Materials, 2014, 26, 4302.
27 Williams G, Trask R, Bond I. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1525.
28 Huang Z, Zhang W, Qian X, et al. Marine Structures, 2020, 72,102756.
[1] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[2] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[3] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[4] 常洪雷, 曲明月, 刘伟, 陈繁育, 周鹏飞, 程梦莹, 刘健. 基于聚乙烯醇制备的自修复胶囊的性能评估[J]. 材料导报, 2021, 35(6): 6212-6218.
[5] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[6] 徐晶, 唐一洪, 王先志. 微生物沉积优化与混凝土自修复条件的相关性研究[J]. 材料导报, 2021, 35(22): 22039-22044.
[7] 许章华, 谢志雄, 康茂东, 王俊, 董仕节, 彭志贤, 刘静. K4169高温合金铸件铸造缺陷修复及疲劳性能研究[J]. 材料导报, 2021, 35(22): 22115-22120.
[8] 喻宣瑞, 姚国文, 范伟庆. 交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J]. 材料导报, 2021, 35(20): 20087-20091.
[9] 杨国坤, 蒋国盛, 刘天乐, 覃鑫, 余尹飞. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2): 2032-2038.
[10] 张喜军, 仝配配, 蔺习雄, 李剑新, 李波. 基于线性振幅扫描试验评价硬质沥青的疲劳性能[J]. 材料导报, 2021, 35(18): 18083-18089.
[11] 沙建芳, 夏中升, 刘建忠, 郭飞, 徐海源. 超高强水泥基灌浆材料疲劳性能研究综述[J]. 材料导报, 2021, 35(11): 11013-11026.
[12] 王芮晗, 赵若虹, 邹宛晏, 王敏, 周博, 齐胜利, 刘刚, 武德珍. 耐原子氧聚酰亚胺材料的研究进展[J]. 材料导报, 2021, 35(11): 11187-11195.
[13] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[14] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[15] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed