Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18083-18089    https://doi.org/10.11896/cldb.20060221
  无机非金属及其复合材料 |
基于线性振幅扫描试验评价硬质沥青的疲劳性能
张喜军1, 仝配配2, 蔺习雄3, 李剑新2, 李波1
1 兰州交通大学道路工程灾害防治技术国家地方联合工程实验室,兰州 730070
2 中石油燃料油有限责任有限公司研究院,北京 100195
3 中石油克拉玛依石化有限责任公司,克拉玛依 834003
Fatigue Characterization of Hard Petroleum Asphalt Based on the Linear Amplitude Sweep Test
ZHANG Xijun1, TONG Peipei2, LIN Xixiong3, LI Jianxin2, LI Bo1
1 National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control, Lanzhou Jiaotong University, Lanzhou 730070, China
2 Research Institute of PetroChina Fuel Oil Co., Ltd., Beijing 100195, China
3 PetroChina Karamay Petrochemical Co., Ltd., Karamay 834003, China
下载:  全 文 ( PDF ) ( 10535KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为评价硬质沥青的疲劳性能,通过旋转薄膜烘箱试验(RTFOT)和压力老化试验(PAV),选用具有代表性的四种硬质沥青和对比试样SBS改性沥青进行了短期老化和长期老化,采用不同温度下的线性振幅扫描试验(LAS)测试了各沥青试样的储能模量、损耗模量、剪切应变、剪切应力等疲劳参数,采用粘弹连续介质损伤模型(VECD模型)计算了沥青的疲劳寿命。结果表明:不同程度的老化均会降低硬质沥青重复荷载作用下应力-应变承受能力、抵抗损伤能力和疲劳寿命;温度升高会一定程度提升硬质沥青抵抗损伤能力和疲劳寿命,降低虚模量衰减;硬质沥青标号越高,则疲劳性能越好,不同油源的同等标号硬质沥青针入度越高,则疲劳性能越好;应力-应变曲线中峰值应力处的应变可以作为评价硬质沥青路面疲劳寿命的评价指标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张喜军
仝配配
蔺习雄
李剑新
李波
关键词:  硬质沥青  线性振幅扫描  疲劳寿命  峰值应力  剪切应变    
Abstract: To evaluate the fatigue property of hard petroleum asphalt, select the representative four kinds of hard petroleum asphalt and SBS modified asphalt of comparative sample, five kinds asphalt were subject to short-term and long-term aging by using rolling thin film oven test (RTFOT) and pressure aging vessel (PAV) test. Their fatigue parameters such as storage modulus, loss modulus, shear strain, shear stress were evaluated by linear amplitude sweep (LAS) test at different temperatures. Using viscoelastic continuum damage (VECD) model calculated the fatigue life of asphalt. The result indicate that the stress-strain withstand capacity, damage resistance and fatigue life of hard petroleum asphalt under repeated loading with aging; hard petroleum asphalt has increased resistance to damage, reduced virtual modulus attenuation, and increased fatigue life with increasing temperature; the fatigue property better with grade of hard petroleum asphalt increasing, compared with the different oil source and the same grade of hard petroleum asphalt, the fatigue property better with penetration increasing; when hard petroleum asphalt was used for low-strength pavement, it fatigue life can evaluate though strains at peak stress in stress-strain curve.
Key words:  hard petroleum asphalt    linear amplitude sweep    fatigue life    peak stress    shear strain
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  U416.217  
基金资助: 国家自然科学基金(51668038;51868042);甘肃省高等学校产业支撑引导项目(2020C-13);甘肃省杰出青年基金(1606RJDA318);甘肃省自然科学基金(1506RJZA064);兰州交通大学百名青年优秀人才培养计划基金;甘肃省交通建设科技项目(2010-12)
作者简介:  李波,兰州交通大学土木工程学院,教授,美国Georgia Southern University博士后,甘肃省杰出青年基金获得者,入选兰州交通大学百名青年优秀人才培养计划(科研型)。兼任甘肃省交通标准化委员会副秘书长,甘肃省交通运输厅专家委员会委员,甘肃省路网监测中的实验室副主任。2011年6月毕业于长安大学,获工学博士学位,同年加入兰州交通大学土木工程学院道路与桥梁系工作至今,主要从事道路材料功能特性与应用研究、道路表面功能、公路养护技术的研究。以第一作者/通讯作者发表学术论文70余篇,其中SCI/EI 30余篇;获国家授权专利11项。
引用本文:    
张喜军, 仝配配, 蔺习雄, 李剑新, 李波. 基于线性振幅扫描试验评价硬质沥青的疲劳性能[J]. 材料导报, 2021, 35(18): 18083-18089.
ZHANG Xijun, TONG Peipei, LIN Xixiong, LI Jianxin, LI Bo. Fatigue Characterization of Hard Petroleum Asphalt Based on the Linear Amplitude Sweep Test. Materials Reports, 2021, 35(18): 18083-18089.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060221  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18083
1 Ziari H, Babagoli R, Ameri M,et al. Construction and Building Mate-rials, 2014,68,685.
2 Haddadi F, Ameri M, Mirabimoghadam M H,et al. Construction and Building Materials, 2015,95, 892.
3 Bahia H U, Hanson D, Zeng M, et al. NCHRP Report 459: Characterization of modified asphalt binders in superpave mix design, Transportation Research Board, USA, 2001.
4 Ameri M, Nowbakht S, Molavem M, et al.Construction and Building Materials, 2016,106, 243.
5 Xue L, Xie W, Wang Y, et al. In: 2017 International Conference on Transportation Infrastructure and Materials. Qingdao, 2017, pp.35.
6 Peng Y. Study and application of hard asphalt for high modulus asphalt concrete. Master's Thesis, Chang'an University, China, 2014(in Chinese).
彭煜. 高模量沥青混合料专用硬质沥青的研制与应用. 硕士学位论文, 长安大学, 2014.
7 Zhou F, Mogawer W, Li H, et al. Journal of Materials Civil Engineering, 2012,25(5), 610.
8 Martono W, Bahia H U, D'angelo J. Journal of Materials Civil Enginee-ring, 2007,19(9), 746.
9 Hajj R, Bhasin A. International Journal of Pavement Engineering, 2018,19(6), 1.
10 Johnson C. Evaluation of accelerated procedures for fatigue characterization of asphalt binders. Ph.D. Thesis, Wisconsin International University, USA, 2010.
11 Hintz C, Velasquez R, Johnson C, et al. Transportation Research Record Journal of the Transportation Research Board, 2011,2207(1), 99.
12 Wang C. Rheological characterization on paving performance of asphalt binder. Master's Thesis, Beijing University of Techonlogy, China, 2015(in Chinese).
王超.沥青结合料路用性能的流变学研究. 硕士学位论文, 北京工业大学, 2015.
13 Safaei F, Lee J, Nascimento L A H D, et al. Road Materials & Pavement Design, 2014, 15, 45.
14 Yuan H, Zhu H Z, Wei Q. Journal of China & Foreign Highway,2020,40(30), 241(in Chinese).
袁海,朱洪洲,魏巧.中外公路,2020,40(30),241.
15 Zhang H Y, Xu G, Chen X H, et al. Journal of Building Materials, 2020,23(1), 168(in Chinese).
张含宇,徐刚,陈先华,等.建筑材料学报, 2020,23(1), 168.
16 Wang C, Castorena C, Zhang J, et al. Road Materials & Pavement Design, 2015,16, 125.
17 Zhou S W, Shi J T, Zhang R, et al. Petroleum Asphalt,2018,32(2), 27(in Chinese).
周水文,时敬涛,张蓉,等.石油沥青, 2018, 32(2), 27.
18 American Association of State and Highway Transportation Officials. AASHTO TP 101-12, UL, 2012.
19 Dong G. Performance and mechanism of asphalt modified with polyphosphoric acid and polyphosphoric acid/polymer. Master's Thesis, Chang'an University, China, 2018(in Chinese).
董刚.多聚磷酸及多聚磷酸/聚合物复合改性沥青的性能和机理分析.硕士学位论文,长安大学, 2018.
20 Ashish P K, Singh D, Bohm S. Construction and Building Materials, 2016, 113, 341.
[1] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[2] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[3] 沙建芳, 夏中升, 刘建忠, 郭飞, 徐海源. 超高强水泥基灌浆材料疲劳性能研究综述[J]. 材料导报, 2021, 35(11): 11013-11026.
[4] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[5] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[6] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[7] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[8] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[9] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[10] 孙志礼, 柴小冬, 柳溪溪, 王健. 基于损伤力学的疲劳裂纹萌生及扩展规律研究*[J]. CLDB, 2017, 31(8): 130-134.
[11] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[12] 周景隆, 李文晓, 薛鹏. 微孔结构对PMI泡沫准静态压缩性能的影响[J]. 《材料导报》期刊社, 2017, 31(20): 147-151.
[13] 肖智杰, 曾凯, 何晓聪, 邢保英, 张龙, 孙鑫宇. SUS304不锈钢点焊与胶焊接头的疲劳强度分析*[J]. 《材料导报》期刊社, 2017, 31(16): 112-116.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed