Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 147-151    https://doi.org/10.11896/j.issn.1005-023X.2017.020.030
  计算模拟 |
微孔结构对PMI泡沫准静态压缩性能的影响
周景隆, 李文晓, 薛鹏
同济大学航空航天与力学学院,上海 200092
The Effects of Microcell Structure on Quasi-static Compression Performance of PMI Foam
ZHOU Jinglong, LI Wenxiao, XUE Peng
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092
下载:  全 文 ( PDF ) ( 2214KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于BBC点集建立了聚甲基丙烯酰亚胺(PMI)闭孔泡沫的Kelvin十四面体模型和Laguerre模型,并采用有限元方法研究了其在准静态载荷作用下的压缩性能。分析了孔径大小、泡孔体积离散系数对压缩弹性模量、初始峰值应力和能量吸收能力的影响。结果表明:Kelvin十四面体模型可以较好地预测PMI泡沫的压缩弹性模量和峰值应力;在相同相对密度条件下,小孔径泡沫的初始峰值应力和能量吸收能力均高于大孔径泡沫,而压缩弹性模量则低于大孔径泡沫;随着泡孔体积离散系数的增大,闭孔PMI泡沫压缩弹性模量、初始峰值应力和能量吸收能力均减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周景隆
李文晓
薛鹏
关键词:  聚甲基丙烯酰亚胺(PMI)闭孔泡沫  十四面体模型  Laguerre模型  弹性模量  初始峰值应力    
Abstract: On the basis of the BBC points set, the Kelvin tetrakaidecahedron and Laguerre tessellation models for the polymethacrylimide (PMI) closed-cell foam were established. The quasi-static compression performance was analyzed by finite element method. The effects of cell size and cell volume dispersion on compression modulus, initial peak stress, and energy absorptivity were discussed. Numerical results showed that the tetrakaidecahedron model can predict the compression elastic modulus and initial peak stress of the PMI foam quite well. Under the same relative density, the smaller cell size will lead to higher initial peak stress and higher energy absorption capacity,but lower compression elastic modulus. The compression elastic modulus, initial peak stress and energy absorption capacity of the closed-cell PMI foam decreases with the increasing cell volume dispersion.
Key words:  polymethacrylimide closed-cell foam    Kelvin tetrakaidecahedron model    Laguerre tessellation    elastic modulus    initial peak stress
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TB332  
  TQ328.2  
作者简介:  周景隆:男,1990年生,硕士,主要研究方向为高分子及复合材料 E-mail:1433481@tongji.edu.cn 李文晓:通讯作者,女,1968年生,副教授,主要研究方向为高分子及复合材料 E-mail:wenxiaoli@tongji.edu.cn
引用本文:    
周景隆, 李文晓, 薛鹏. 微孔结构对PMI泡沫准静态压缩性能的影响[J]. 《材料导报》期刊社, 2017, 31(20): 147-151.
ZHOU Jinglong, LI Wenxiao, XUE Peng. The Effects of Microcell Structure on Quasi-static Compression Performance of PMI Foam. Materials Reports, 2017, 31(20): 147-151.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.030  或          http://www.mater-rep.com/CN/Y2017/V31/I20/147
1 Qu Chunyan, Xie Kelei, Ma Yingjian, et al. Preparation and characterization of polymethacrylimide foams[J]. J Mater Eng, 2008(11):19(in Chinese).
曲春艳,谢克磊,马瑛剑,等. 聚甲基丙烯酰亚胺(PMI)泡沫塑料的制备与表征[J]. 材料工程, 2008(11):19.
2 Chen Xiaoqiang, Zhang Man, Lei Yi. Preparation and compression properties of PMI foam[J]. China Plast Ind, 2011,39(6):60(in Chinese).
陈小强,张曼,雷毅. 聚甲基丙烯酰亚胺泡沫的制备及其压缩性能[J]. 塑料工业, 2011,39(6):60.
3 Zhao Feiming, An Sitong, Mu Han. Present state of art of polymethacrylimide (PMI) foam research[J]. Aerosp Mater Technol, 2008(1):1(in Chinese).
赵飞明,安思彤,穆晗. 聚甲基丙烯酰亚胺(PMI)泡沫研制现状[J]. 宇航材料工艺, 2008(1):1.
4 Chen Y, Das R, Battley M. Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams[J]. Int J Solids Struct, 2015,52:150.
5 Lu Pingcai, Ruan Shiping. Preparation and research of thermostable microporous PMI foams[J]. Guangzhou Chem Ind, 2011,39(23):71.
鲁平才,阮诗平. 耐高温微细孔结构PMI泡沫的制备及研究[J]. 广州化工, 2011,39(23):71.
6 Xie Kelei, Qu Chunyan, Ma Yingjian, et al. Effect of cross-linking agent to structure and properties of PMI foams[J]. J Mater Eng, 2009(4):23(in Chinese).
谢克磊,曲春艳,马瑛剑,等. 交联剂对PMI泡沫塑料结构与性能的影响[J]. 材料工程, 2009(4):23.
7 Qu Chunyan, Jiao Zibao. Effect of monomer ratio on structure and properties of PMI foams[J]. Chem Adhes, 2011(5):25(in Chinese).
曲春艳,焦自保. 单体配比对PMI泡沫塑料结构和性能的影响[J]. 化学与黏合, 2011(5):25.
8 Chen Xiaoqiang, Zhang Man, Lei Yi. Transformation of molecular structure during foaming of PMI foam[J]. Aerosp Mater Technol, 2011(5):32(in Chinese).
陈小强,张曼,雷毅. PMI泡沫发泡过程中的分子结构转变[J]. 宇航材料工艺, 2011(5):32.
9 Chen Yimin, He Bin. Preparation and structural characterization of polymethacrylimide foams[J]. New Chem Mater, 2007(2):32(in Chinese).
陈一民,何斌. 聚甲基丙烯酰亚胺(PMI)泡沫制备及结构表征[J]. 化工新型材料, 2007(2):32.
10Zhang Jialei, Lu Zixing. Finite element analysis for the elastic pro-perties of closed-cell foams based on a tetrakaidecahedron model[J]. J Mech Strength, 2007,29(2):315(in Chinese).
张家雷,卢子兴. 基于十四面体模型的闭孔泡沫材料弹性性能的有限元分析[J]. 机械强度, 2007,29(2):315.
11Zhu Hong, Han Jiecai, Zhang Yumin, et al. Characterization of tetrakaidecahedral closed-cell cellular materials[J].J Harbin Inst Technol, 2011(5):71(in Chinese).
朱虹,韩杰才,张宇民,等. 十四面体闭孔多孔材料表征量特性研究[J]. 哈尔滨工业大学学报, 2011(5):71.
12Song Yanze, Li Zhiqiang, Zhao Longmao. Finite element analysis of dynamic crushing behaviors of closed-cell foams based on a tetrakai-decahedron model[J]. Explos Shock Waves, 2009(1):49(in Chinese).
宋延泽,李志强,赵隆茂. 基于十四面体模型的闭孔泡沫材料动态力学性能的有限元分析[J]. 爆炸与冲击, 2009(1):49.
13Lu Zixing, Zhang Jialei, Wang Song. Investigation into elastic pro-perties of an isotropic random foam model[J].J Beijing University of Aeronautics and Astronautics, 2006,32(12):1468(in Chinese).
卢子兴,张家雷,王嵩. 各向异性随机泡沫模型的弹性性能分析[J].北京航空航天大学学报, 2006,32(12):1468.
14Wang Song, Lu Zixing. Investigation into elastic properties of closed-cell Voronoi foam [J]. Acta Aeronaut Astronaut Sin, 2007,28(3):574(in Chinese).
王嵩,卢子兴. 闭孔 Voronoi泡沫的弹性性能分析[J]. 航空学报, 2007,28(3):574.
15Cao Yu, Li Wenxiao, Guan Wei. Investigation into elastic properties of close-cell foam based on the Voronoi random anisotropic model[J]. Mater Rev:Res,2012,26(8):145(in Chinese).
曹禺,李文晓,官威. 基于Voronoi随机模型的各向异性闭孔泡沫的弹性性能研究[J]. 材料导报:研究篇, 2012,26(8):145.
16Barbier C, Michaud P M, Baillis D, et al. New laws for the tension/compression properties of Voronoi closed-cell polymer foams in relation to their microstructure[J]. Eur J Mech A:Solids, 2014,45:110.
17Li Z, Zhang J, Fan J, et al. On crushing response of the three-dimensional closed-cell foam based on Voronoi model[J]. Mech Mater, 2014,68:85.
18Fang Q, Zhang J, Zhang Y, et al. Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact[J]. Compos Struct, 2015,124:409.
19Zhang Fu, Li Xudong. Microstructure design and elastic property analysis of foam material[J]. J Mater Eng, 2014(2):39(in Chinese).
张赋,李旭东. 泡沫材料微结构设计与弹性性能分析[J]. 材料工程, 2014(2):39.
20Zhang Fu, Li Xudong. Research on incremental algorithm and software design for Laguerre diagram of set of weighted points[J]. Comput Eng Appl, 2012(30):10.
张赋,李旭东. 带权点集Laguerre图的增量算法与软件设计研究[J]. 计算机工程与应用, 2012(30):10.
21胡培. ROHACELL®技术手册[M].上海:德固萨(中国)投资有限公司上海分公司, 2005:24.
22Xue Peng. Preparation technology and performance study of PMI foam[D]. Shanghai:Tongji University, 2015(in Chinese).
薛鹏. PMI泡沫的制备工艺与性能研究[D].上海:同济大学, 2015.
23Tan P J,Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminum foams. Part I—Experimental data and observations[J]. J Mech Phys Solids, 2005(53):2174.
24Lorna J Gibson, Michael F Ashby. Cellular solids:Structure and properties[M]. Cambridge University Press, 1999:184.
[1] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[2] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[3] 牟信妮, 卢立新, 李国辉. 基于灰关联熵理论的蜂窝纸板面内承载机理及性能影响分析[J]. 材料导报, 2019, 33(12): 2100-2106.
[4] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[5] 王建祥,唐新军,何建新,张凌凯. 考虑多因素的浇筑式沥青混凝土动力特性研究[J]. 《材料导报》期刊社, 2018, 32(12): 2085-2090.
[6] 万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
[7] 聂光临,包亦望,万德田,田远. 水泥基管材力学性能评价方法[J]. 《材料导报》期刊社, 2018, 32(12): 2072-2077.
[8] 孙长振, 何元东, 毛卫国, 顾阳, 毛贻齐, 张宏龙, 陈彦飞, 裴永茂, 方岱宁. 基于新型鼓包法测试NiFe2O4薄膜的力磁性能*[J]. 《材料导报》期刊社, 2017, 31(15): 145-148.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed