Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11013-11026    https://doi.org/10.11896/cldb.20020136
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
超高强水泥基灌浆材料疲劳性能研究综述
沙建芳1,2, 夏中升1,2,*, 刘建忠1,2, 郭飞1,2, 徐海源1,2
1 高性能土木工程材料国家重点实验室, 南京 210008;
2 江苏苏博特新材料股份有限公司, 南京 211103
A Review of the Research on the Fatigue Properties of Ultra-high Strength Cement-based Grouting Materials
SHA Jianfang1,2, XIA Zhongsheng1,2,*, LIU Jianzhong1,2, GUO Fei1,2, XU Haiyuan1,2
1 State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210008, China;
2 Jiangsu Sobute New Materials Co. Ltd., Nanjing 211103, China
下载:  全 文 ( PDF ) ( 9310KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 海上风电是未来清洁能源发展的一个重要组成部分,风机基础是海上风电场建设的重点之一。海上风机基础多采用灌浆连接,通过在内外钢筒内灌注超高强水泥基灌浆料,使上下两部分形成受力结构。在风机漫长服役期内,灌浆连接段会承受多达109次轴向及弯矩荷载效应,疲劳问题较为突出。而灌浆料作为灌浆连接段重要的组成部分,其疲劳性能是评价灌浆连接段结构承载能力的重要指标。
超高强灌浆料与高强混凝土同属于水泥基材料范畴,它们在疲劳损伤机理等方面具有共通之处。单轴等幅疲劳作用荷载下水泥基材料的疲劳损伤、极限破坏机理是该领域研究的热点。而超高强灌浆材料作为新型建筑材料,受制于研发制备水平,疲劳性能试验方面的研究相对较少。近年来,业内材料研发单位开展了旗下相关产品的疲劳强度与疲劳寿命之间作用关系的研究工作,而相关高校基于业内品牌产品相继开展了不同结构形式灌浆连接段静力与疲劳性能研究,也取得了一些成果,但关于超高强灌浆料疲劳性能的影响因素以及损伤机制等尚属空白。
针对工程中大量应用的混凝土材料,科研人员开展了比较完整的疲劳性能研究,包括反复荷载作用下的疲劳损伤、极限破坏机理,单轴、多轴受压以及拉伸、弯拉、复合荷载作用的疲劳性能的测试方法以及影响因素与作用机制等。由于受试验设备、条件、环境等因素的影响,结果呈现出多样性和离散性。而在超高强灌浆料方面,研究者侧重于超高强灌浆料不同服役环境下疲劳性能获取、性能预测以及灌浆连接段疲劳性能的研究,并形成海上风电场灌浆料疲劳性能计算的相关规范。
本文通过梳理混凝土和灌浆料疲劳性能、损伤机理等方面的相关进展,汲取混凝土疲劳性能研究中的经验,以期对超高强灌浆料疲劳性能研究提供指导和参考;阐述了常用的混凝土疲劳寿命预测模型,对DNV-GL系列规范中关于海上风电场灌浆料疲劳计算模型进行参数解读与适应性分析,使相关从业人员和科研人员对超高强灌浆料疲劳性能有更深入的认识。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沙建芳
夏中升
刘建忠
郭飞
徐海源
关键词:  海上风电场  灌浆料  受压疲劳  疲劳寿命预测    
Abstract: Offshore wind power is an important part of the development of clean energy in the future, and the wind turbine foundation is one of the key points of offshore wind farm construction. The foundation of offshore fan is mostly connected by grouting, and the upper and lower parts of the foundation are formed into a stress structure by pouring ultra-high strength cement-based grout into the inner and outer steel cylinders. In the long service life of the fan, the grouting connection section will bear up to 100 million times axial and bending moment load effects, and the fatigue problem is more prominent. As an important part of grouting connection, grouting material’s fatigue performance is an important performance index to evaluate the bearing capacity of grouting connection.
Ultra-high strength cement-based grouting materials and high strength concrete all belong to the category of cement-based materials, which have common points in fatigue damage mechanism. The fatigue damage and ultimate failure mechanism of water mud based materials under uniaxial constant amplitude fatigue load is a hot topic in this field. However, as a new type of building material, the research on the fatigue performance of ultra-high strength grouting material is relatively less due to the research and development level. In recent years, the units of materials in the industry have carried out the research on the relationship between the fatigue strength and fatigue life of related products. Based on the brand products in the industry, relevant universities have successively carried out the research on the static and fatigue performance of different structural forms of grouting connection sections, and have also made some achievements. However, the influence factors and damage mechanism of ultra-high strength grouting materials are still blank.
For concrete materials used in engineering, researchers have carried out a relatively complete study on fatigue performance, including fatigue damage and ultimate failure mechanism under repeated load, fatigue performance under uniaxial and multiaxial compression, tension, bending tension and composite load, test methods, influencing factors and mechanism, etc. Due to the influence of test equipment, conditions, environment and other factors, the results show diversity and discreteness. In the aspect of ultra-high strength grouting materials, the researchers focus on the fatigue performance acquisition, performance prediction and the research of the fatigue performance of the grouting joint under different service conditions, and form the relevant specifications for the fatigue performance calculation of grouting materials in offshore wind farms.
This paper reviews the relevant progress of domestic and foreign scholars in the fatigue performance and damage mechanism of concrete and grouting materials, and draws the research experience of the fatigue performance of concrete, in order to provide guidance and reference for the fatigue performance research of ultra-high strength grouting materials. It also expounds the commonly used fatigue life prediction model of concrete, and makes parameter interpretation and adaptability analysis on the fatigue calculation model of grouting material in offshore wind farm in DNV-GL series of specifications, so as to promote the relevant practitioners and researchers to further understand the fatigue properties of ultra-high strength grouting materials.
Key words:  offshore wind farm    grout material    fatigue property    fatigue life prediction
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TU508.041  
基金资助: 国家自然科学基金面上项目(51978318)
通讯作者:  *xiazhongsheng@cnjsik.cn   
作者简介:  沙建芳,硕士,高级工程师。高性能土木工程材料国家重点实验室,江苏苏博特新材料股份有限公司,功能性水泥基材料研究所所长。2005年6月获东南大学材料学专业硕士学位,主要从事建筑材料相关的科学研究、产品研发和成果转化工作。参与了包括国家重点研发计划、973在内的各级科研课题10余项,发表学术论文30余篇,其中SCI/EI收录论文5篇,参与编写著作2本,申请发明专利20余项,已授权专利16项,编制国家、行业等各级标准8项。夏中升,硕士,工程师。高性能土木工程材料国家重点实验室,江苏苏博特新材料股份有限公司。2017年6月毕业于武汉理工大学材料科学与工程专业,获得工学硕士学位。主要从事超高性能水泥基材料的开发与应用的研究。
引用本文:    
沙建芳, 夏中升, 刘建忠, 郭飞, 徐海源. 超高强水泥基灌浆材料疲劳性能研究综述[J]. 材料导报, 2021, 35(11): 11013-11026.
SHA Jianfang, XIA Zhongsheng, LIU Jianzhong, GUO Fei, XU Haiyuan. A Review of the Research on the Fatigue Properties of Ultra-high Strength Cement-based Grouting Materials. Materials Reports, 2021, 35(11): 11013-11026.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020136  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11013
1 Igwemezie V, Mehmanparast A, Kolios A. Renewable & Sustainable Energy Reviews,2019,101,181.
2 Song C. Shanxi Energy and Conservation,2010(2),46(in Chinese).
宋础.山西能源与节能,2010(2),46.
3 Guo L P. Study on fatigue property and equation of high performance concrete with high proportion ground blast furnace slag. Master's Thesis, Southeast University, China,2005(in Chinese).
郭丽萍.大掺量磨细矿渣高性能砼疲劳性能研究与疲劳方程的建立.硕士学位论文,东南大学,2005.
4 Zhou B M. Experimental study on compressive fatigue properties of UHTCC. Master's Thesis, Zhejiang University, China,2015(in Chinese).
周宝民.超高韧性水泥基复合材料(UHTCC)压缩疲劳性能试验研究.硕士学位论文,浙江大学,2015.
5 Zheng K R. Effect of mineral admixtures on fatigue behavior of concrete and mechanism. Ph. D. Thesis, Southeast University, China,2005(in Chinese).
郑克仁.矿物掺合料对混凝土疲劳性能的影响及机理.博士学位论文,东南大学,2005.
6 Ou J P, Lin Y Q. China Civil Engineering Journal,1999(5),15(in Chinese).
欧进萍,林燕清.土木工程学报,1999(5),15.
7 Ma N J. Journal of Tianjin Vocational Institutes,2018,20(7),109(in Chinese).
马纳静.天津职业院校联合学报,2018,20(7),109.
8 Xin L, Jiang F X, Jiang J Y, et al. Journal of Qingdao University of Technology,2011(3),18(in Chinese).
辛雷,姜福香,蒋金洋,等.青岛理工大学学报,2011(3),18.
9 Holmen J O. ACI Special Publication,1982,75,71.
10 Zhou H Y,Liu H Y,Zhao X H,et al. Concrete,2019(12),1(in Chinese).
周宏宇,刘洪宇,赵晓花,等.混凝土,2019(12),1.
11 Hong J X, Miao C W, Shi X X, et al. Journal of Nanjing University of Science and Technology,2013,37(1),150(in Chinese).
洪锦祥,缪昌文,石杏喜,等.南京理工大学学报,2013,37(1),150.
12 Zhu J S,Xiao R C,Song Y P. Journal of Building Materials,2005.8(5),484(in Chinese).
朱劲松,肖汝诚,宋玉普.建筑材料学报,2005,8(5),484.
13 Zhu J S,Zhu X C. Engineering Mechanics,2012,29(5),107(in Chinese).
朱劲松,朱先存.工程力学,2012,29(5),107.
14 Liu J C,Chen T,Ma Z R,et al. Grouting technology of offshore wind fram, China Water & Power Press, China,2016(in Chinese).
刘晋超,陈涛,马兆荣,等.海上风电灌浆技术,中国水利水电出版社,2016.
15 Xu S N,Dong L X,Wang B W,et al. Journal of Hydraulic Engineering,2014,45(1),1(in Chinese).
徐世娘,董丽欣,王冰伟,等.水利学报,2014,45(1),1.
16 Fan Z Y. Study on fatigue damage of concrete based on ICT technique. Master's Thesis, Harbin Institute of Technology, China,2018(in Chinese).
樊梓元.基于ICT技术的混凝土疲劳损伤分析研究.硕士学位论文,哈尔滨工业大学,2018.
17 Pease B J, Scheffler G A, Janssen H. Construction and Building Mate?rials,2012,36,419.
18 Wei T, Dang F N, Xie Y L. Sadhana,2015,40(1),263.
19 Obara Y, Tanikura I, Jung J, et al. Journal of Advanced Concrete Technology,2016,14(8),433.
20 Promentilla M A B, Sugiyama T. Journal of Advanced Concrete Technology,2010,8(2),97.
21 Promentilla M A B, Sugiyama T. Advances in computed tomography for geomaterials: GeoX 2010,John Wiley & Sons, Inc, New York, USA,2013.
22 Lindquist W B, Venkatarangan A. Physics & Chemistry of the Earth Part A Solid Earth & Geodesy,1999,24(7),593.
23 Meng X H. Experimental and theoretical research on residual strength of concrete under fatigue loading. Ph.D. Thesis, Dalian University of Technology, China,2006(in Chinese).
孟宪宏.混凝土疲劳剩余强度试验及理论研究.博士学位论文,大连理工大学,2006.
24 Van Ornum J. Transctions,1903,51,443.
25 Aas?Jakobsen K. Fatigue of concrete beams and columns,Norwegian, 1970.
26 Matsushita H, Tokumitsu Y. Proceeding of JSCE,1972,198(2),127.
27 Gray W,Melaughlin J F, Antrim J C. ACI Journal,1961,58,149.
28 Murdock J W. Engineering Experiment Station Bulletin,1965,475,25.
29 Bennett E W, Muir S E J. Magazine of Concrete Research,1967,19(59),113.
30 Sparks P R, Menzies J B. Magazine of Concrete Research,1973,25(83),73.
31 Kim J K, Kim Y Y. Cement and Concrete Research,1996,26(10),1513.
32 Wu P G, Zhao G Y, Bai L M. China Civil Engineering Journal,1994,27(3),33(in Chinese).
吴佩刚,赵光仪,白利明.土术工程学报,1994,27(3),33.
33 Chen X, Liu Z, Guo S, et al. Construction and Building Materials,2019,205,10.
34 Erik L N, Ramon I. ACI Materials Journal,1988,85(3),248.
35 Chen Z F S,Li Q B. Journal of Hydraulic Engineering,2008,39(4),385(in Chinese).
陈樟福生,李庆斌.水利学报,2008,39(4),385.
36 Lan S R, Guo Z H. Journal of Materials in Civil Engineering,1999,11(2),105.
37 Wang R M, Zhao G F, Song Y P. China Civil Engineering Journal,1991,24(4),38(in Chinese).
王瑞敏,赵国藩,宋玉普.土术工程学报,1991,24(4),38.
38 Lv P Y. Experimental study on dynamic strength and deformation of concrete under uniaxial and biaxial action. Ph.D. Thesis, Dalian University of Technology, China,2001(in Chinese).
吕培印.混凝土单轴、双轴动态强度和变形试验研究.博士学位论文,大连理工大学,2001.
39 Zhu J S. Experimental study on fatigue properties of plain concrete under biaxial stress states and theories on failure prediction.Ph.D. Thesis, Dalian University of Technology, China,2003(in Chinese).
朱劲松.混凝土双轴疲劳试验与破坏预测理论研究.博士学位论文,大连理工大学,2003.
40 Shen J Y. Experimental study on dynamic biaxial compression test and damage constitutive model of full?graded concrete. Master's Thesis, Dalian Jiaotong University, China,2018(in Chinese).
申佳玉.全级配混凝土动态双轴压试验及其损伤本构模型研究.硕士学位论文,大连交通大学,2018.
41 Shen L. Test and design index of multi?axial dynamic mechanical properties of hydraulic concrete. Ph.D. Thesis, Dalian University of Techno?logy, China,2018(in Chinese).
沈璐.水工混凝土多轴动态力学特性试验及设计指标研究.博士学位论文,大连理工大学,2018.
42 Badly P F, Vial D J, Hanus J L. International Journal of Impact Engineering,2011,38(2),73.
43 Chen J Y, Zhang Z X. Engineering Failure Analysis,2011,18(7),1784.
44 Fujikake K, Mori K, Uebayashi K. Structures and Materials,2000,(8),511.
45 Zeng S J, Ren X D, Li J. Journal of Structural Engineering,2013,139(9),1582.
46 Surendra P, Shah A P F, Richard A. Journal of structural Engineering,1983,109(7),1695.
47 Taliercio A, Gobbi E. Magazine of Concrete Research,1996,48(176),151.
48 Hooi T T. Magazine of Concrete Research,2000,52(1),7.
49 Cao W, Hu J Z. China Civil Engineering Journal,2005,38(8),31(in Chinese).
曹伟,胡建周.土术工程学报,2005,38(8),31.
50 Cornelissen H A W, Reinhardt H W. Magazine of Concrete Research,1984,36(129),216.
51 Niklas S, Vladislav G, Jithender J T, et al. Structural Concrete,2019,20(4),1265.
52 Zhang B, Philips D V, Wu K. Magazine of Concrete Research,1996,48(177),361.
53 Zhao K,Qiao C S,Luo F R,et al. Chinese Journal of Rock Mechanics and Engineering,2014,33(S2),3466(in Chinese).
赵凯,乔春生,罗富荣,等.岩石力学与工程学报,2014,33(S2),3466.
54 L?hning T, Vo?beck M, Kelm M. Proceedings of the Institution of Civil Engineers?Energy,2013,166(4),153.
55 S?rensen E V. Nordic Concrete Research,2011,44,1.
56 Liu D H,Yuan G K,Chen T,et al. Southern Energy Construction,2016(S1),76(in Chinese).
刘东华,元国凯,陈涛,等.南方能源建设,2016(S1),76.
57 Andersen M S, Petersen P. Global Wind Power,2004,1,1.
58 Wilke F. Load bearing behaviour of grouted joints subjected to predominant bending. Ph.D. Thesis, Leibniz University,2014.
59 Li Z X,Chen T,Zhao Q,et al. Journal of Building Structures,2017(s1),465(in Chinese).
李筑轩,陈涛,赵淇,等.建筑结构学报,2017(s1),465.
60 Lotsberg I. Marine Structures,2013,32,113.
61 Chen T, Zhang C H, Zhao Q, et al. The Ocean Engineering,2017,35(3),112(in Chinese).
陈涛,张持海,赵淇,等.海洋工程,2017,35(3),112.
62 Chen T, Zhang C H, Zhao Q, et al. Naval Architecture and Ocean Engineering,2018,34(5),1(in Chinese).
陈涛,张持海,赵淇,等.船舶与海洋工程,2018,34(5),1.
63 Han L H, Tao Z, Yan W B. Earthquake Engineering and Engineering Dynamics,2001,21(1),64(in Chinese).
韩林海,陶忠,阎维波.地震工程与工程振动,2001,21(1),64.
64 Nie J G, Wang Y H, Fan J S. China Civil Engineering Journal,2014(1),47(in Chinese).
聂建国,王宇航,樊健生.土木工程学报,2014(1),47.
65 Zhong W Q, Zhang H M. Low Temperature Architecture Technology,2014,36(6),83(in Chinese).
仲伟秋,张宏民.低温建筑技术,2014,36(6),83.
66 Zhao Q, Chen T, Wang X, et al. Structural Engineers,2016,32(5),59(in Chinese).
赵淇,陈涛,王衔,等.结构工程师,2016,32(5),59.
67 Billington C J, Tebbett I E. In: Proceedings of the Annual Offshore Technology Conference. Houston, Texas,1980,pp.449.
68 Ingebrigtsen T, Loset ?, Nielsen S G. In: 22nd Offshore Technology Conference. Houston, Texas,1990,pp.615.
69 Boswell L F, D'Mello C. In: Offshore Technology Conference. Houston, Texas,1986.
70 Lohaus L, Anders S. Wind energy, Springer, Berlin,2007,pp.309.
71 Schaumann P, Wilke F. In: Proceedings of the 8th German Wind Energy Conference. Dewek,2006.
72 Schaumann P, Bechtel A, Lochte?Holtgreven S. In: Proceedings of the European Wind Energy Conference. Honolulu, Hawaii,2010,pp.2047.
73 Schaumann P, Wilke F. In: The Seventeenth International Offshore and Polar Engineering Conference. Lisbon, Portugal,2007,pp.340.
74 Schaumann P, Wilke F, Lochte?Holtgreven S. In: European Wind Energy Conference. Brussels,2008.
75 Schaumann P, Wilke F, Lochte?Holtgreven S. Stahlbau,2008,77(9),647.
76 Schaumann P, Lochte?Holtgreven S. In: DEWEK 2010?10th German Wind Energy Conference. Bremen,2010.
77 Schaumann P, Lochte?Holtgreven S. Stahlbau,2011,80(4),226.
78 Klose M, Mittelstaedt M, Mulve A. In: The Twenty?second International Offshore and Polar Engineering Conference. Rhodes, Greece,2012,pp.434.
79 Chen T, Wang X, Yuan G K, et al. Marine Structures,2018,60,52.
80 Wang X, Chen T, Zhao Q, et al. International Journal of Steel Structures,2016,16(4),1149.
81 Moller A. Wind Engineering,2005,29(5),463.
82 Wang D D, Chen K W, Wang C Q, et al. Ocean Development and Management,2018(S1),140(in Chinese).
汪冬冬,陈克伟,王成启,等.海洋开发与管理,2018(S1),140.
83 Sun Y B, Chen D M. China Harbour Engineering,2016,36(11),42(in Chinese).
孙洋波,陈大明.中国港湾建设,2016,36(11),42.
84 Lotsberg I, Serednicki A, Oerlemans R, et al. The Structural Engineer,2013,91(1),42.
85 Li F Z. Research on load capacity of the corroded reinforced concrete beam after reciprocating load. Master's Thesis, Liaoning Technical University, China,2014(in Chinese).
李富斋.往复荷载作用后锈蚀钢筋混凝土梁承载力研究.硕士学位论文,辽宁工程技术大学,2014.
86 Li F Z, Yang X M. In: Proceedings of the twenty?first national conference on structural engineering. Shenyang, China,2012,pp.42.
李富斋,杨晓明.第21届全国结构工程学术会议.沈阳,2012,pp.42.
87 Wang X Y, Wang L, Zhao Y R. Sichuan Cement,2018(1),316(in Chinese).
王晓勇,王磊,赵燕茹.四川水泥,2018(1),316.
88 Gao W G. Research on fatigue analysis of open type wharf on piles under cyclic loading. Master's Thesis, Tianjin University, China,2008(in Chinese).
高万国.循环荷载作用下高桩码头构件疲劳损伤分析方法研究.硕士学位论文,天津大学,2008.
89 Liu Y, Gu Q, Tian S, et al. Bulletin of the Chinese Ceramic Society,2019,38(5),1356(in Chinese).
刘月,谷倩,田水,等.硅酸盐通报,2019,38(5),1356.
90 Zheng X L, Wang H, Yan J H, et al. Material fatigue theory and engineering application, Science Press, China,2013(in Chinese).
郑修麟,王泓,鄢君辉,等.材料疲劳理论与工程应用,科学出版社,2013.
91 Shi X P, Yao Z K, Li H, et al. China Civil Engineering Journal,1990(3),12(in Chinese).
石小平,姚祖康,李华,等.土木工程学报,1990(3),12.
92 Wang F W, Xu R P, Zhang L X, et al. Journal of Tongji University,2003,31(4),1146(in Chinese).
王凤武,徐人平,张立翔,等.同济大学学报,2003,31(4),1146.
93 Ou Z M, Sun L. Journal of Zhejiang University (Engineering Science),2017,51(6),1074(in Chinese).
欧祖敏,孙璐.浙江大学学报(工学版),2017,51(6),1074.
94 Yang K W, Luo X G. Journal of Hunan Institute of Engineering (Natural Science Edition),2016,26(1),76(in Chinese).
杨科文,罗许国.湖南工程学院学报(自然科学版),2016,26(1),76.
95 Zhao Y L, Sun W. Journal of Chongqing Jiaotong University,1999(1),19(in Chinese).
赵永利,孙伟.重庆交通学院学报,1999(1), 19.
96 Susmel L, Meneghetti G, Atzori B. Journal of Engineering Materials and Technology,2009,131(2),021.
97 Zhao H X. Development of fatigue life prediction toolbox based on fracture mechanics. Master's Thesis, Northeastern University, China,2012(in Chinese).
赵海翔.基于断裂力学的疲劳寿命预测工具箱的开发.硕士学位论文,东北大学,2012.
98 Ji J L, Li H J, Yan G L, et al. Journal of Wuhan University of Technology (Transportation Science & Engineering).2009,33(1),95(in Chinese).
季家林,李慧剑,闫国亮,等.武汉理工大学学报(交通科学与工程版),2009,33(1),95.
99 Lei D, Zhao J H, Gong M, et al. Journal of Experimental Mechanics,2008(5),60(in Chinese).
雷冬,赵建华,龚明,等.实验力学,2008(5),60.
10 0 Zhang L, Yuan J X, Liu W J, et al. Journal of Harbin Institute of Technology,2011(s1),53(in Chinese).
张莉,袁家欣,刘文晶,等.哈尔滨工业大学学报,2011(s1),53.
1 Tang H W, Li S B, Zhu C M. Journal of the China Railway Society,2007(3),86(in Chinese).
汤红卫,李士彬,朱慈勉.铁道学报,2007(3),86.
2 Yang Y, Fu D Y, Yong B. Journal of Chongqing Technology and Business University (Natural Science Edition),2019,36(3),87(in Chinese).
杨艺,付道一,雍彬.重庆工商大学学报(自然科学版),2019,36(3),87.
3 Song C. Shanxi Energy and Conservation,2010(3),37(in Chinese).
宋础.山西能源与节能,2010(3),37.
[1] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[4] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[5] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[6] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[7] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[8] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[9] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[10] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed