Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11187-11195    https://doi.org/10.11896/cldb.20020053
  高分子与聚合物基复合材料 |
耐原子氧聚酰亚胺材料的研究进展
王芮晗1,*, 赵若虹1,*, 邹宛晏1, 王敏1, 周博2, 齐胜利1,*, 刘刚2,*, 武德珍1,3
1 北京化工大学化工资源有效利用国家重点实验室,北京 100029;
2 上海卫星装备研究所,上海 200240;
3 北京化工大学常州先进材料研究院,常州 213164
Research Progress of Atomic Oxygen Resistant Polyimide Materials
WANG Ruihan1,*, ZHAO Ruohong1,*, ZOU Wanyan1, WANG Min1, ZHOU Bo2, QI Shengli1,*, LIU Gang2,*, Wu Dezhen1,3
1 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
2 Shanghai Institute of Spacecraft Equipment, Shanghai 200240, China;
3 Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, China
下载:  全 文 ( PDF ) ( 3558KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自 21 世纪以来,航空航天方面的快速发展为人类日常通信、观察天文气相、探索宇宙等提供了重要的技术支持手段。其中,聚酰亚胺(PI)凭借其优异的耐高低温性能、力学性能、耐辐射性、电性能、耐溶剂性等成为不可或缺的航天器材料之一,且被广泛用作航天器的太阳电池阵列的柔性基板、多层热绝缘毯和电路系统的绝缘保护层。
然而,航天器长期工作于低地球轨道,这一特殊环境中的原子氧(AO)具有高通量和强氧化性,它会快速侵蚀航天器表面的主要热控材料PI,使其光学、电学、力学等重要性能退化,从而导致航天器工作效率下降、使用寿命缩短、系统目标设计失败,严重阻碍航天事业的发展。
多年来,针对上述问题,研究人员提出了多种解决办法并已取得较大进展。其中,在材料表面施加防护涂层已发展成为既能保护基材不受原子氧剥蚀、又能保持基底材料原有性能的方法,其适用于多种表面制作,工艺简单,应用广泛;而在耐原子氧聚酰亚胺新型材料方面,科研人员也克服困难,开发出性能更为优异、使用寿命更长的新材料。另外,由于特殊试验条件的限制,促使耐原子氧地面模拟实验发展迅猛,目前已提出多种模拟理论,并制造模拟器以辅助研究。
本文对比了目前已商业化应用的聚酰亚胺材料的耐原子氧性能,介绍了耐原子氧的地面模拟试验方法的原理和分类,总结了耐原子氧聚酰亚胺材料的类别,包括防护涂层法和新型方法制备的耐原子氧聚酰亚胺材料,并对各种不同类型防护方法的优缺点进行了合理评判,指出耐原子氧聚酰亚胺材料的未来发展方向及应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王芮晗
赵若虹
邹宛晏
王敏
周博
齐胜利
刘刚
武德珍
关键词:  原子氧  聚酰亚胺  自修复  耐原子氧试验方法  低地球轨道    
Abstract: Since 21st century, the rapid development of aerospace has provided important technical support means for human daily communication, observation of astronomical gas phase, and exploration of the universe. Polyimide (PI) has become one of the indispensable spacecraft materials by virtue of its excellent high and low temperature resistance, mechanical properties, radiation resistance, electrical properties, and solvent resistance. It’s widely used as flexible substrate for solar cell arrays, multi?layer thermal insulation blanket and insulating protective layer for circuit systems of the spacecraft.
However, the spacecraft works in low earth orbit containing atomic oxygen (AO). High?throughput AO with strong oxidizing properties can ra?pidly erode the main thermal control material PI on the surface of the spacecraft, degrading its optical, electrical, mechanical and other important properties, resulting in decreased efficiency and shortened service life of the spacecraft,which leads to the failure of the system’s targets and seriously hinders the development of the space industry.
Over the years, researchers proposed a variety of solutions to the above problems and made great progress. Among them, the method of applying a protective coating on the surface of the material can not only protect the substrate from atomic oxygen erosion, but also maintain the original performance of the base material. It’s suitable for making a variety of different surfaces, has a simple process, a wide range of applications as well. As for the new material of atomic polyimide resistant polyimide, researchers have also overcome difficulties and developed new materials with better performance and longer service life. In addition, due to the limitations of special test conditions, the development of atomic oxygen?resistant ground simulation experiments has developed rapidly. So far, a variety of simulation theories have been proposed and simulators have been manufactured to assist in research.
This article compares the resistance to atomic oxygen of polyimide materials that are currently commercially available, introduces the principles and classification of ground simulation test methods for atomic oxygen resistance, summarizes the types of polyimide materials against atomic oxygen, including protective coating and novel atomic oxygen resistant polyimide material, and made a reasonable judgment on the advantages and disadvantages of various types of protection methods. At the same time, it also points out the development direction and prospect of atomic oxygen resistant polyimide materials in the future.
Key words:  atomic oxygen    polyimide    self-healing    AO resistance test method    low-earth-orbit
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TB35  
基金资助: 国家重大基础研究计划(2014CB643604; 2014CB643606); 国家自然科学基金(51673017; 21404005; 51273018; 5179500011); 中央高校基本科研业务费专项资金资助(XK1802-2); 中国航空科学基金(201718S9001); 江苏省杰出青年基金(BK20140006); 装备预研共用技术项目(41422040401)
通讯作者:  †These authors contributed equally to this work.   
作者简介:  王芮晗,2018年毕业于北京化工大学,获得工学学士学位。现为北京化工大学材料科学与工程学院硕士研究生,在齐胜利教授的指导下进行研究。目前主要研究领域为耐原子聚酰亚胺材料的结构与性能。赵若虹,2017年考入北京化工大学,专业为高分子材料与工程,在齐胜利教授的指导下研究耐原子氧聚酰亚胺材料。刘刚,2011年毕业于哈尔滨工业大学,获得材料学博士学位,现就职于上海卫星装备研究所,主要从事航天器材料与制造、空间环境工程方向的技术研究工作。齐胜利,2008年于北京化工大学获得博士学位,2009—2011年于日本名古屋大学从事JSPS博士后研究,现为北京化工大学材料科学与工程学院教授、博士研究生导师,曾获江苏省杰出青年基金(2014年)资助,以第一作者和通讯作者发表SCI论文60余篇,获授权专利36余项。主要研究方向为高性能及功能聚酰亚胺材料的分子结构设计及其在柔性显示、信息存储及二次能源系统中的应用。
引用本文:    
王芮晗, 赵若虹, 邹宛晏, 王敏, 周博, 齐胜利, 刘刚, 武德珍. 耐原子氧聚酰亚胺材料的研究进展[J]. 材料导报, 2021, 35(11): 11187-11195.
WANG Ruihan, ZHAO Ruohong, ZOU Wanyan, WANG Min, ZHOU Bo, QI Shengli, LIU Gang, Wu Dezhen. Research Progress of Atomic Oxygen Resistant Polyimide Materials. Materials Reports, 2021, 35(11): 11187-11195.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020053  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11187
1 Watson K A, Palmieri F L, Connell J W. Macromolecules,2002,35,4968.
2 Qi H, Qian Y, Xu J, et al. Corrosion Science,2017,124,56.
3 Duo S W, Liu T Z, Zou X P, et al. Rare Metal Materials and Enginee?ring,2009,38(S2),743(in Chinese).
多树旺,刘庭芝,邹小平,等.稀有金属材料与工程,2009,38(S2),743.
4 Zhang X, Wu Y, He S, et al. Materials Chemistry and Physics,2009,114(1),179.
5 Liu K, Mu H, Shu M, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,529,356.
6 Gotlib?Vainstein K, Gouzman I, Girshevitz O, et al. ACS Applied Mate?rials & Interfaces,2015,7(6),3539.
7 Minton T K, Wu B, Zhang J, et al. ACS Applied Materials & Interfaces,2010,2(9),2515.
8 Truscott P, Lei F, Dyer C, et al. In: 2000 IEEE Radiation Effects Data Workshop. Reno, USA,2000,pp.147.
9 Wilson J W, Kim M Y, Shinn J L, et al. Solar Cycle Variation and Application to the Space Radiation Environment. NASA TP?209369,1999.
10 Zheng K H,Yang S S,Li Z H,et al. Spacecraft Environment Engineering,2010,27(6),751(in Chinese).
郑阔海,杨生胜,李中华,等.航天器环境工程,2010,27(6),751.
11 Wang J,Zhu L Q,Li W P,et al. Acta Materiae Compositae Sinica,2009,26(4),36(in Chinese).
王静,朱立群,李卫平,等.复合材料学报,2009,26(4),36.
12 Wang X, Li Y, Qian Y, et al. Advanced Materials,2018,30(36),1803854.
13 Carraher J, Charles E. Inorganic and metal?containing polymeric mate?rials, Springer Science & Business Media, Germany,2012.
14 Packirisamy S, Schwam D, Litt M H. Journal of Materials Science,1995,30(2),308.
15 Fewell L L. Journal of Applied Polymer Science,1990,41(1?2),391.
16 Devapal D, Packirisamy S, Nair C P R, et al. Journal of Materials Science,2006,41(17),5764.
17 Duo S W, Li M S, Zhou Y C. In: China Instrument and Instrument So?ciety. Chengde, 2006,pp.506(in Chinese).
多树旺,李美栓,周延春.中国仪器仪表学会.承德,2006,pp.506.
18 Wang J,Li W P,Chen Y C,et al. Journal of Beijing University of Aeronautics and Astronautics,2009,35(7),824(in Chinese).
王静,李卫平,陈贻炽,等.北京航空航天大学学报,2009,35(7),824.
19 Zhang J Z, Wang X, Lu L D, et al. Engineering Plastics Application,2003(1),20(in Chinese).
张金柱,汪信,陆路德,等.工程塑料应用,2003(1),20.
20 Duo S, Li M, Zhu M, et al. Materials Chemistry & Physics,2008,112(3),1093.
21 Dever J, Groh K D, Townsend J, et al. Astronomical Data Analysis Software & Systems XI,1998,2013(1),484.
22 Thompson C M, Smith J G, Watson K A, et al. Polyimides containing pendent phosphine oxide groups for space applications, NASA NASI?97046, USA,2002.
23 Connell J W, Watson K A. High Performance Polymers,2001,13(1),23.
24 Thompson C M, Smith J J G, Connell J W. High Performance Polymers,2003,15(2),181.
25 Connell J W, Watson K A. Polyimides containing fluorine and phosphorus for potential space applications, NASA Langley Technical Report Server,USA,2000.
26 Su Y X, Wang K, Zhan M S. Journal of Beijing University of Aeronautics and Astronautics,2009,35(7),807(in Chinese).
苏英霞,王凯,詹茂盛.北京航空航天大学学报,2009,35(7),807.
27 Song G, Li X, Jiang Q, et al. RSC Advances,2015,5(16),11980.
28 Tomczak S J, Minton T K, Brunsvold A L, et al. In: The Society for the Advancement of Material and Process Engineering. Covina, USA,2007.
29 Brunsvold A L, Minton T K, Gouzman I, et al. High Performance Polymers,2004,16(2),303.
30 Friedrich J, Kühn G, Mix R, et al. Canadian Medical Association Journal,2003,72(2),99.
31 Yang J J. Study on preparation and properties of the poly(imidesiloxane)/polyimide composite film for atomic oxide?resistant. Master's Thesis, Jilin University, China,2006(in Chinese).
杨晶晶.抗原子氧聚酰亚胺硅氧烷/聚酰亚胺复合膜的制备及性能研究.硕士学位论文,吉林大学,2006.
32 Lei X, Qiao M, Tian L, et al. Corrosion Science,2015,98,560.
33 Illingsworth M L, Betancourt J A, Chen Y, et al. Journal of Applied Polymer Science,2009,113(2),1198.
34 Illingsworth M L, Rheingold A L. Cheminform,1988,19(16),4312.
35 Shawn W, Dai H X, Stapleton R A, et al. High Performance Polymers,2006,18(4),399.
36 Illingsworth M L, Wang W, Mccarney J P, et al. Journal of Applied Polymer Science,2010,113(2),1198.
37 Fei X, Kai W, Zhan M. Applied Surface Science,2010,256(24),7384.
38 Wang X, Zhao X, Wang M, et al. Nuclear Instruments & Methods in Physics Research,2006,243(2),320.
39 Mei L, Wang Q, Wang T, et al. Composites Part B Engineering,2015,77,215.
40 Balaji R, Sasikumar M, Elayaperumal A. Polymer Degradation and Stability,2015,114,125.
41 Kushnoore S, Varma G A, Akhil K, et al. International Journal of Mechanical Engineering and Technology (IJMET),2018,9(4),73.
42 Zhang J, Ai L, Li X, et al. Materials Chemistry and Physics,2019,222,384.
[1] 常洪雷, 曲明月, 刘伟, 陈繁育, 周鹏飞, 程梦莹, 刘健. 基于聚乙烯醇制备的自修复胶囊的性能评估[J]. 材料导报, 2021, 35(6): 6212-6218.
[2] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[3] 杨国坤, 蒋国盛, 刘天乐, 覃鑫, 余尹飞. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2): 2032-2038.
[4] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[5] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[6] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[7] 陈营, 魏燕红, 陈德平, 慕东. 中温成型含硅可溶性聚酰亚胺薄膜及其性能研究[J]. 材料导报, 2020, 34(Z1): 572-575.
[8] 周立生, 刘剑侠, 吴淑新, 陈国辉, 杨士山, 杨立波. 类玻璃高分子材料的研究进展[J]. 材料导报, 2020, 34(Z1): 585-591.
[9] 何亮, 黄胡端, Wim Van den bergh, Tóth Csaba, 高杰, Karol Kowalski, Jan Valentin. 沥青自修复微胶囊研究进展[J]. 材料导报, 2020, 34(15): 15092-15101.
[10] 刘仁臣, 陆静. KrF激光刻蚀制备300 nm自支撑聚酰亚胺膜[J]. 材料导报, 2019, 33(Z2): 580-583.
[11] 陈营, 周红梅, 陈德平, 慕东, 魏燕红, 叶远新. TAP-BPDA超支化聚酰亚胺的制备及性能[J]. 材料导报, 2019, 33(z1): 491-494.
[12] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[13] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[14] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[4] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[5] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[6] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[7] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[8] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[9] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[10] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed