Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23097-23105    https://doi.org/10.11896/cldb.20070008
  金属与金属基复合材料 |
抗菌不锈钢的抗菌原理、常规加工与增材制造
刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰
暨南大学先进耐磨蚀及功能材料研究院,广州 510632
Antibacterial Principles, Traditional Processing and Additive Manufacturing of Antibacterial Stainless Steel
LIU Ying, YANG Junjie, YI Yanliang, ZHANG Zhiguo, WANG Xiaojian, LI Wei, ZHOU Shengfeng
Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
下载:  全 文 ( PDF ) ( 4429KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 各类公共卫生事件频发,催生了各类抗菌产品研发和应用。抗菌材料按原料来源分类包括无机抗菌材料、有机抗菌材料、天然抗菌材料和合成抗菌材料。不锈钢作为运用最广泛的无机金属材料之一,在抗菌材料的应用方面已取得阶段性进展。
不锈钢获得抗菌性能的常规加工方法有两种,即表面改性和合金化处理。然而,表面型抗菌不锈钢经磨蚀后极易丧失抗菌效果,合金型抗菌不锈钢中抗菌离子利用率较低,这些都导致不锈钢的抗菌效果不理想。因此,研究者们除研究不同抗菌元素的抗菌机理外,还从提高抗菌不锈钢耐久性和抗菌效率方面进行了不同制备工艺的探索,扩大了抗菌不锈钢的使用范围。
近年来,研究者们开发了多种抗菌不锈钢的制备工艺以提高其使用寿命和抗菌性能。通过沉积法、渗透法和喷涂法等方式将抗菌元素被添加到不锈钢表面,可使抗菌层厚度增加,抗菌效果更稳定;适量抗菌金属元素被添加到不锈钢中,经抗菌处理后这些抗菌金属元素能够不断地向介质中释放抗菌金属离子,使不锈钢的抗菌率大幅提高。此外,为了满足抗菌不锈钢在生物医学领域的使用需求,常在其表面引入羟基磷灰石、聚(L-丙交酯-己内酯)等生物相容性良好的物质,或采用先进的制备工艺控制有害金属离子的释放浓度,以实现抗菌性能和生物相容性的有机结合。
本文综述了近10年国内外各种抗菌不锈钢的研究现状。介绍了表面改性抗菌不锈钢和合金型抗菌不锈钢的抗菌原理、特点与制造方法。此外,针对常规制造法存在制备周期较长、材料耗损较多、环境污染较严重等问题,本文结合增材制造技术的优势,试图寻找一种新型的抗菌不锈钢制备工艺,以其个性化定制、耗时短、精密加工等优势弥补上述缺点,并且介绍了增材制造抗菌材料在医疗卫生领域中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘莹
杨俊杰
易艳良
张治国
王小健
李卫
周圣丰
关键词:  抗菌不锈钢  表面改性  合金化  增材制造    
Abstract: With the frequent occurrence of various public health incidents, the development and application of various antibacterial products have been spawned. Antibacterial materials are classified according to the source of raw materials, including inorganic antibacterial materials, orga-nic antibacterial materials, natural antibacterial materials and synthetic antibacterial materials. As one of the most widely used inorganic metal ma-terials, stainless steel has made some progress in the application of antibacterial materials.
There are two methods to obtain antibacterial properties of stainless steel: surface modification and alloying. However, the surface antibacterial stainless steel after abrasion is easy to lose the antibacterial effect, and the antibacterial ion utilization rate of alloy antibacterial stainless steel is low, which leads to unsatisfactory antibacterial effect of stainless steel. This urges intensive research endeavors to optimize antibacterial stainless steel fabrication process, aiming at improving durability and antibacterial efficiency, and expanding the scope of use of antibacterial stainless steel.
In recent years, in order to improve the service life and antibacterial properties of antibacterial stainless steel, a variety of preparation technologies of antibacterial stainless steel have been developed. Adding antibacterial elements to stainless steel surface by deposition, penetration, implantation and spraying can increase the thickness of antibacterial layer and stabilize the antibacterial effect. At the same time, an appropriate amount of antibacterial metal elements added to stainless steel, after appropriate antibacterial treatment, can be continuously released in the me-dium, which make antibacterial rate greatly improve. In addition, in order to meet the use demand of antibacterial stainless steel in biomedical field and realize the organic combination of antibacterial property and biocompatibility, some biocompatible substances such as hydroxyapatite and poly (L-lactide-caprolactone) are often introduced into the surface, or use advanced preparation technology to control the release concentration of harmful metal ions, which can achieve the organic combination of antibacterial properties and biocompatibility.
This paper summarizes the research status of various antibacterial stainless steels at home and abroad in the past decade. The antibacterial principles, characteristics of surface modified antibacterial stainless steel and alloy antibacterial stainless steel and the related manufacturing met-hods are introduced. In addition, due to the limitations of traditional manufacturing method, such as poor antibacterial durability, long preparation cycle, large material wear, and serious environmental pollution, additive manufacturing is considered as a new technique for producing antibacterial stainless steel. This developed technique exhibits the personalized customization, short time manufacturing, precision machining and other advantages to replace the above shortcomings of subtractive manufacturing. The application of additive manufacturing antibacterial materials in the medical care is also introduced in this paper.
Key words:  antibacterial stainless steel    surface modification    alloying    additive manufacturing
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  R318  
基金资助: 国家自然科学基金(51471084;61475117);江西省杰出青年基金(20162BCB23039);天津市自然科学基金京津冀合作专项(17JCZDJC40500)
通讯作者:  zhousf1228@163.com   
作者简介:  刘莹,2019年6月毕业于桂林理工大学金属材料工程专业,取得工学学士学位。现为暨南大学先进耐磨蚀及功能材料研究院硕士研究生,在周圣丰教授指导下主要从事激光熔化沉积新材料方面研究。
周圣丰,暨南大学先进耐磨蚀及功能材料研究院,教授/天津市特聘教授、博士生导师。2008年12月在华中科技大学武汉光电国家研究中心获物理电子学博士学位。2017年获天津市中青年科技创新领军人才,2016年获江西省杰出青年基金。主要从事生物医用材料、激光增材制造与激光表面强化方面的研究工作。
引用本文:    
刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰. 抗菌不锈钢的抗菌原理、常规加工与增材制造[J]. 材料导报, 2021, 35(23): 23097-23105.
LIU Ying, YANG Junjie, YI Yanliang, ZHANG Zhiguo, WANG Xiaojian, LI Wei, ZHOU Shengfeng. Antibacterial Principles, Traditional Processing and Additive Manufacturing of Antibacterial Stainless Steel. Materials Reports, 2021, 35(23): 23097-23105.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070008  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23097
1 Tian C L. World Latest Medicine Information, 2019, 19(65), 41 (in Chinese).
田承莉. 世界最新医学信息文摘, 2019, 19(65), 41.
2 Koller M F, Pletscher C, Scholz S M, et al. International Journal of Occupational and Environmental Health, 2016, 22(3), 193.
3 Saha R, Donofrio R S. Applied Microbiology and Biotechnology, 2012, 94(5), 1119.
4 Warshaw E M, Hagen S L, DeKoven J G, et al. Dermatitis, 2017, 28(3), 183.
5 Buckley S A, Evershed R P. Nature, 2001, 413(6858), 837.
6 Xiong J. Microstructure and antibacterial properties of austenitic stainless steel by copper ions implantation. Master's Thesis, Wuhan University of Science and Technology, China, 2004 (in Chinese).
熊娟. 铜离子注入奥氏体不锈钢中显微组织与抗菌性能的研究. 硕士学位论文, 武汉科技大学, 2004.
7 Qin H, Cao H L, Zhao Y C, et al. ACS Applied Materials & Interfaces, 2015, 7(20), 10785.
8 Alias R, Mahmoodian R, Genasan K, et al. Materials Science & Enginee-ring C-Materials for Biological Applications, 2020, 107, 110304.
9 Karabudak F, Yesildal R, Sukuroglu E E, et al. Arabian Journal for Science and Engineering, 2017, 42(6), 2329.
10 Wei C B. Preparation and properties of antibacterial TiN/Cu-Zn nanomultilayers and composite films by magnetron sputtering. Ph. D. Thesis, Harbin Institute of Technology, China, 2009 (in Chinese).
韦春贝. 磁控溅射TiN/Cu-Zn抗菌纳米多层膜与复合膜制备及性能. 博士学位论文, 哈尔滨工业大学, 2009.
11 Sheel D W, Brook L A, Ditta I B, et al. International Journal of Photoe-nergy, 2008, 2008, 168185.
12 Wang S S, Xu B F, Ni H W, et al. Heat Treatment of Metals, 2003 (2), 49 (in Chinese).
王世森, 许伯藩, 倪红卫,等. 金属热处理, 2003 (2), 49.
13 Li D, Xu B F, Ni H W, et al. Heat Treatment of Metals, 2005(2), 8 (in Chinese).
李东, 许伯藩, 倪红卫,等. 金属热处理, 2005 (2), 8.
14 Cowan M M, Abshire K Z, Houk S L, et al. Journal of Industrial Micro-biology & Biotechnology, 2003, 30(2), 102.
15 Galeano B, Korff E, Nicholson W L. Applied and Environmental Microbio-logy, 2003, 69(7), 4329.
16 Evans P, Sheel D W. Surface & Coatings Technology, 2007, 201(22), 9319.
17 Zou D N, Zhang W, Zhang S L, et al. Foundry Technology, 2005(11), 24 (in Chinese).
邹德宁, 张威, 张寿禄,等. 铸造技术, 2005 (11), 24.
18 Zhang W L, Song Q L, Fan Q Y, et al. Heat Treatment of Metals, 2015, 40(7), 107 (in Chinese).
张文莉, 宋群玲, 范启印,等. 金属热处理, 2015, 40(7), 107.
19 Hong I T, Koo C H. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2005, 393(1), 213.
20 Ye D, Li J, Jiang W, et al. Materials & Design, 2012, 41, 16.
21 Vaynman S, Guico R S, Fine M E, et al. Metallurgical and Materials Transactions A, 1997, 28, 1274.
22 He H P. Wuhan Iron and Steel Corporation Technology, 1992(3), 33 (in Chinese).
何汉平. 武钢技术, 1992 (3), 33.
23 Zhang Z X. Microstructures and preoterties of copper(nitrogen)-bearing antibacterial stainless steels. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2002(in Chinese).
张志霞. 含铜(氮)抗菌不锈钢的组织与性能研究. 博士学位论文, 上海交通大学, 2002.
24 Murcar-Evans B I, Cabral A D, Toutah K, et al. Analyst, 2017, 142(23), 4511.
25 Nan L, Liu Y Q, Lue M Q, et al. Journal of Materials Science-Materials in Medicine, 2008, 19(9), 3057.
26 Lu M Q, Chen S H, Dong J S, et al. Metallic Functional Materials, 2005(6), 10 (in Chinese).
吕曼祺, 陈四红, 董加胜,等. 金属功能材料, 2005(6), 10.
27 Bragg P D, Rainnie D J. Canadian Journal of Microbiology, 1974, 20(6), 883.
28 Yang K, Chen S H, Dong J S, et al. Metallic Functional Materials, 2005(6), 6 (in Chinese).
杨柯, 陈四红, 董加胜,等. 金属功能材料, 2005 (6), 6.
29 Trevors J T. Microbiological Sciences, 1987, 4(1), 29.
30 Kolmas J, Groszyk E, Kwiatkowska-Rozycka D. Biomed Research International, 2014, 2014, 178123.
31 Watson G K, Cummins D, Van der Ouderaa F J. Caries Research, 1991, 25(6), 431.
32 Raffi M, Mehrwan S, Bhatti T M, et al. Annals of Microbiology, 2010, 60(1), 75.
33 Feng Q L, Wu J, Chen G Q, et al. Journal of Biomedical Materials Research, 2000, 52(4), 662.
34 Kubota Y, Niwa C, Ohnuma T, et al. Journal of Photochemistry and Photobiology A-Chemistry, 2001, 141(2), 225.
35 Malafronte R D, Calvo E, James A A, et al. Insect Biochemistry and Molecular Biology, 2003, 33(1), 63.
36 Wang W J, Qian C F, Shen J Z, et al. Acta Microbiologica Sinica, 1999(5), 469 (in Chinese).
王文军, 钱传范, 申继忠,等. 微生物学报, 1999(5), 469.
37 Sharma A, Dutta R K, Roychowdhury A, et al. RSC Advances, 2016, 6(78), 74812.
38 Cho M, Chung H M, Choi W Y, et al. Applied and Environmental Microbiology, 2005, 71(1), 270.
39 Zhang L S, Wong K H, Yip H Y, et al. Environmental Science & Techno-logy, 2010, 44(4), 1392.
40 Li Y, Zhang W, Niu J F, et al. American Chemical Society Nano, 2012, 6(6), 5164.
41 Lopes F S, Oliveira J R, Milani J, et al. Materials Science & Engineering C-Materials for Biological Applications, 2017, 81, 373.
42 Wang G M, Feng H Q, Hu L S, et al. Nature Communications, 2018, 9, 2055.
43 Kang S J, Kim D H, Mishig-Ochir T, et al. Archives of Pharmacal Research, 2012, 35(3), 409.
44 Palffy R, Gardlik R, Behuliak M, et al. Molecular Medicine, 2009, 15(1), 51.
45 Pouny Y, Rapaport D, Mor A, et al. Biochemistry, 1992, 31(49), 12416.
46 Rozek A, Friedrich C L, Hancock R E. Biochemistry, 2000, 39(51), 15765.
47 Marchand C, Krajewski K, Lee H F, et al. Nucleic Acids Research, 2006, 34(18), 5157.
48 Castle M, Nazarian A, Yi S S, et al. The Journal of Biological Chemistry, 1999, 274(46), 32555.
49 Martinez B, Bottiger T, Schneider T, et al. Applied and Environmental Microbiology, 2008, 74(15), 4666.
50 Vincent P A, Morero R D. Current Medicinal Chemistry, 2009, 16(5), 538.
51 Cao P, Yuan C Q, Xiao J F, et al. Surface and Interface Analysis, 2018, 50(4), 516.
52 Duday D, Vreuls C, Moreno M, et al. Surface & Coatings Technology. 2013, 218, 152.
53 Anandkumar B, George R P, Philip J, et al. Analytica Chimica Acta, 2020, 1126, 38.
54 Caro A, Humblot V, Methivier C, et al. Journal of Physical Chemistry B, 2009, 113(7), 2101.
55 Dudchenko O Y, Pyeshkova V M, Soldatkin O O, et al. Nanoscale Research Letters, 2016, 11, 59.
56 Walker S L, Fourgialakis M, Cerezo B, et al. Journal of the Institute of Brewing. 2007, 113(1), 61.
57 Atta N F, Fekry A M, Hassaneen H M. International Journal of Hydrogen Energy, 2011, 36(11), 6462.
58 Jiang L. Preparation of surface antibacterial stainless steel by plasma alloying technology. Master's Thesis, Taiyuan University of Technology, China, 2012(in Chinese).
蒋立. 等离子合金化法制备表面抗菌不锈钢. 硕士学位论文, 太原理工大学, 2012.
59 Ni H W, Dan Z G, Xu B F, et al. Transactions of Materials and Heat Treatment, 2005(5), 42 (in Chinese).
倪红卫, 但智钢, 许伯藩,等. 材料热处理学报, 2005(5), 42.
60 Qin Z W, Wang L, Xu B F, et al. Materials Protection, 2006(8), 32 (in Chinese).
覃志伟, 王蕾, 许伯藩,等. 材料保护, 2006 (8), 32.
61 Wang L, Qin Z W, Ni H W, et al. Surface Technology, 2006(3), 39 (in Chinese).
王蕾, 覃志伟, 倪红卫,等. 表面技术, 2006(3), 39.
62 Wei C B, Gong C Z, Tian X B, et al. Chinese Journal of Vacuum Science and Technology, 2010, 30(1), 96 (in Chinese).
韦春贝, 巩春志, 田修波,等. 真空科学与技术学报, 2010, 30(1), 96.
63 Heinonen S, Nikkanen J P, Laakso J, et al. In: Proceedings of the 2nd International Conference on Competitive Materials and Technological Processes (IC-CMTP). Miskolc, Hungary, 2013, pp. 012064.
64 Batory D, Czerniak-Reczulska M, Kolodziejczyk L, et al. Applied Surface Science,2013, 275, 303.
65 Alias R, Mahmoodian R, Genasan K, et al. Materials Science & Enginee-ring C-Materials for Biological Applications. 2020, 107, 110304.
66 Echavarria A M, Rico P, Gomez Ribelles J L, et al. Vacuum, 2017, 145, 55.
67 Pradhaban G, Kaliaraj G S, Vishwakarma V. Progress in Biomaterials, 2014, 3(2), 123.
68 Wang M. Preparation of antibacterial film on stainless steel surface. Master's Thesis, Zhejiang University, China, 2003(in Chinese).
汪铭. 不锈钢表面抗菌薄膜的制备. 硕士学位论文, 浙江大学, 2003.
69 Gokcekaya O, Webster T J, Ueda K, et al. Materials Science & Enginee-ring C-Materials for Biological Applications, 2017, 77, 556.
70 Sivaraj D, Vijayalakshmi K. Journal of Analytical and Applied Pyrolysis, 2018, 134, 176.
71 Sivaraj D, Vijayalakshmi K. Ultrasonics Sonochemistry, 2019, 59, 104730.
72 Roopmani P, Satheesh S, Raj D C, et al. ACS Biomaterials Science & Engineering, 2019, 5(6), 2899.
73 Horkavcova D, Beloubkova T, Mizerova Z, et al. Ceramics-Silikaty, 2012, 56(4), 314.
74 Cao H L, Liu X Y, Meng F H, et al. Biomaterials, 2011, 32(3), 693.
75 Berger T J, Spadaro J A, Chapin S E, et al. Antimicrobial Agents and Chemotherapy, 1976, 9(2), 357.
76 Chiang W C, Tseng I S, Moller P, et al. Materials Chemistry and Phy-sics, 2010, 119(1), 123.
77 Xuan Y. Study of the silver precipitation behavior in silver-contain 304 austenitic stainless steel. Master's Thesis, Tsinghua University, China, 2014(in Chinese).
轩阳. 含银304奥氏体不锈钢中富银相析出行为研究. 硕士学位论文, 清华大学, 2014.
78 Xie Q. Microstructure and properties of copper-bearing ferritic stainless steel. Master's Thesis, Northeastern University, China, 2011(in Chinese).
解琼. 含铜铁素体不锈钢的组织与性能. 硕士学位论文, 东北大学, 2011.
79 Yang Z Y, Li W H, Lin S Y. Metallic Functional Materials, 2000(4), 1(in Chinese).
杨志勇, 李文辉, 林师焱. 金属功能材料, 2000(4), 1.
80 Zhang W, Li N, Xu Y G, et al. Heat Treatment of Metals, 2004 (8), 21 (in Chinese).
张伟, 李宁, 胥永刚,等. 金属热处理, 2004 (8), 21.
81 Zhang S, Yang C, Ren G, et al. Materials Technology, 2015, 30(B2), 126.
82 Zhang S Y. Study on the mechanism of the release of Cu ions and the biological effect of Cu-bearing stainless steel. Master's Thesis, University of Science and Technology Liaoning, China, 2014(in Chinese).
张书源. 含铜不锈钢铜离子释放机制研究及其生物学效应探索. 硕士学位论文, 辽宁科技大学, 2014.
83 Nan L, Yang K. Materials Technology, 2016, 31(1), 44.
84 Chen S H, Lv M Q, Zhang J D, et al. Acta Metallurgica Sinica, 2004(3), 314 (in Chinese).
陈四红, 吕曼祺, 张敬党,等. 金属学报, 2004(3), 314.
85 Nishiyabu K, Ishida M, Masai Y, et al. Joural of Korean Power Metallurgy Instit, 2002, 9(4), 227.
86 Yuan L, Ding S L, Wen C E. Bioactive Materials, 2019, 4, 56.
87 Zhang B, Huang Q R, Gao Y, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2012, 27(4), 665.
88 Habijan T, Haberland C, Meier H, et al. Materials Science & Engineering C-Materials for Biological Applications, 2013, 33(1), 419.
89 Yang Y Q, Lu J B, Luo Z Y, et al. Rapid Prototyping Journal, 2012, 18(6), 482.
90 Bibb R, Eggbeer D, Williams R. Rapid Prototyping Journal, 2006, 12(2), 95.
91 Li R D, Liu J H, Shi Y S, et al. Journal of Materials Engineering and Performance, 2010, 19(5), 666.
92 Wehmöller M, Warnke P H, Zilian C, et al. In: Conference Record of the 19th International Congress and Exhibition on Computer Assisted Radiology and Surgery. Berlin, 2005.
93 Wang Y, Shen Y F, Wang Z Y, et al. Materials Letters, 2010, 64(6), 674.
94 Coello R, Charlett A, Wilson J, et al. Journal of Hospital Infection, 2005, 60(2), 93.
95 Agarwal A, Lin B, Wang J C, et al. Global Spine Journal, 2019, 9(1), 62.
96 Qing Y A, Li K S, Li D D, et al. Materials Science & Engineering C-Materials for Biological Applications, 2020, 108, 110430.
97 Hans M, Tamara J C, Mathews S, et al. Applied Surface Science, 2014, 320, 195.
98 McGaffey M, Zur Linden A, Bachynski N, et al. Plos One, 2019, 14(2), 0212995.
99 Hlinka J, Kraus M, Hajnys J, et al. Materials, 2020, 13(7), 13071527.
100 Kong D C, Ni X Q, Dong C F, et al. Materials & Design, 2018, 152, 88.
101 Wang Q, Ren L, Li X P, et al. Materials Science & Engineering C-Materials for Biological Applications, 2016, 68, 519.
102 Quan J F, Lin K J, Gu D D. Powder Technology, 2020, 364, 478.
103 Filters, Reusable Respirators with 3D Printed Metal, (n.d.). Available online: https://www.materialstoday.com/additive-manufacturing/news/reusable-respirators-with-3d-printed-metal-filters/ (accessed on 11 May 2020)
[1] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[2] 杨广宇, 汤慧萍, 刘楠, 贾文鹏, 贾亮, 杨坤, 王建. 粉床型电子束增材制造W-Nb合金的缺陷及显微组织[J]. 材料导报, 2021, 35(z2): 448-451.
[3] 卢祺, 黄锋, 郭逊. 合金化对Mg-Ni系合金储氢性能的影响:综述[J]. 材料导报, 2021, 35(9): 9033-9040.
[4] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[5] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[6] 张朝磊, 邵洙浩, 李戬, 王文军, 蒋波. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106.
[7] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[8] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[9] 常坤, 梁恩泉, 张韧, 郑敏, 魏雷, 黄文静, 林鑫. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
[10] 朱诚意, 鲍远凯, 汪勇, 马江华, 李光强. 新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J]. 材料导报, 2021, 35(23): 23089-23096.
[11] 田根, 王文宇, 常青, 任智强, 王晓明, 朱胜. 电弧增材制造技术研究现状及展望[J]. 材料导报, 2021, 35(23): 23131-23141.
[12] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[13] 于桐, 邵文尧, 洪专, 吴晨溥, 沈路钫, 谢全灵. 石墨烯量子点在分离膜材料中的应用研究进展[J]. 材料导报, 2021, 35(21): 21143-21150.
[14] 郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
[15] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed