Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23089-23096    https://doi.org/10.11896/cldb.20070220
  金属与金属基复合材料 |
新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展
朱诚意1,2, 鲍远凯1,2, 汪勇1,2, 马江华1,2, 李光强1,3
1 省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,武汉 430081
3 武汉科技大学钢铁冶金新工艺湖北省重点实验室,武汉 430081
Research Progress on Application Status and Property Control of Non-oriented Silicon Steel for Traction Motor of New Energy Vehicles
ZHU Chengyi1,2, BAO Yuankai1,2, WANG Yong1,2, MA Jianghua1,2, LI Guangqiang1,3
1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081,China
2 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081,China
3 Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking, Wuhan University of Science and Technology, Wuhan 430081,China
下载:  全 文 ( PDF ) ( 2423KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 汽车和钢铁是我国的支柱产业。新能源汽车可以缓解汽车对化石燃料的依赖,降低温室气体排放量,减少环境污染,具有广阔的应用前景。驱动电机是新能源汽车的动力中心,铁芯是驱动电机实现能量转换的关键部件。无取向硅钢是目前性价比最高、商业化应用最普遍的铁芯材料。开发高频下低铁损、高磁感、高强度的驱动电机用无取向硅钢,是实现新能源汽车产业高质量发展的前提。高品质无取向硅钢可以提升新能源汽车驱动电机能量转换效率、输出功率,延长其使用寿命,并降低材料成本,因而倍受行业关注。本论文从满足铁芯加工装配、保证能量转换效率、降低制备和使用成本、适应电机工作环境变化四个方面归纳出新能源汽车驱动电机对无取向硅钢性能的特殊要求;评价了国内外驱动电机用无取向硅钢主要生产企业的技术开发现状和不同规格产品的铁损、磁感、强度指标;综述了国内外通过优化合金成分体系设计、组织结构调控、制备工艺及产品规格来提高新能源汽车驱动电机用无取向硅钢性能和产品性能评价方面的研究进展;分析了目前驱动电机用无取向硅钢制备和使用过程中存在的问题;指出了未来新能源汽车驱动电机用无取向硅钢的发展趋势,以期为我国新能源汽车驱动电机用高强度无取向硅钢的研发和低成本制造提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱诚意
鲍远凯
汪勇
马江华
李光强
关键词:  新能源汽车驱动电机  高强度无取向硅钢  合金化  组织结构  性能    
Abstract: Automobile and steel are both the pillar industries in our country. The dependence of vehicles on petrifaction fuel will be remitted, and greenhouse gas emissions will be reduced with less environmental pollution after new energy vehicles are put into use widely. The application prospect of new energy vehicles is broad. Traction motors are the power center of the new energy vehicles, and the core is the key component to realize the energy conversion of the traction motor. Non-oriented silicon steel has been the most cost-effective core material in commercial application up to now. Developing non-oriented silicon steel for traction motor with low iron loss, high magnetic properties and high strength at high frequency working conditions is the premise to realize the high quality development of new energy vehicle industry. High quality non-oriented silicon steels used in traction motor of new energy vehicles will improve the output power, energy conversion efficiency, life of the motor and reduce the production cost, which is highlighted focused. In this paper, the special requirements for the new energy vehicle traction motor on the performance of non-oriented silicon steel are summarized from four aspects, including meeting processing and assembly requirement for the core, ensuring the energy conversion efficiency, reducing the cost of manufacture and use, and adapting to changing work environment of the new energy vehicles. The current technological development situation and the indexes including iron loss, magnetic induction and strength of different specification pro-ducts used at home and abroad are evaluated. This paper reviews the research progress of properties improvement of the non-oriented silicon steel used in the drive motor of new energy vehicles domestic and abroad, by optimizing alloy composition design, microstructure and texture adjustment and control, manufacture process and specification, as well as properties testing. The problems existing in the manufacture and application process of the above non-oriented silicon steel are also analyzed. The development trend of the non-oriented silicon steels is pointed out, which can provide a reference direction for the development and low-cost manufacturing of high-strength non-oriented silicon steel used for traction motor of new energy vehicles in China.
Key words:  traction motor of new energy vehicles    high-strength non-oriented silicon steel sheets    alloying    microstructure and texture    properties
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TG142.7  
基金资助: 国家自然科学基金重点支持项目 (U1860205)
通讯作者:  liguangqiang@wust.edu.cn   
作者简介:  朱诚意,武汉科技大学教授,博士研究生导师。主持完成国家自然科学基金等国家级、省部级和企业委托项目10多项。研究方向:特殊钢精炼及其组织结构调控;冶金及材料制备过程物理化学;金属材料表面改性处理。累计已发表冶金和材料领域研究论文100多篇,合作出版教材2部。
李光强,武汉科技大学教授,博士研究生导师。研究方向:纯净钢冶炼与夹杂物控制;冶金资源循环利用。主持完成自然科学基金及企业委托项目共20余项。在Acta Materialia、MMTA、MMTB等期刊发表SCI收录论文130篇,主编《钢铁冶金的环保与节能》,在《钛微合金钢》及其英文版各撰写一章。
引用本文:    
朱诚意, 鲍远凯, 汪勇, 马江华, 李光强. 新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J]. 材料导报, 2021, 35(23): 23089-23096.
ZHU Chengyi, BAO Yuankai, WANG Yong, MA Jianghua, LI Guangqiang. Research Progress on Application Status and Property Control of Non-oriented Silicon Steel for Traction Motor of New Energy Vehicles. Materials Reports, 2021, 35(23): 23089-23096.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070220  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23089
1 Wakisaka T, Arai S, Kurosaki Y. Nippon Steel Technical Report, 2013, 103, 116.
2 Oda Y, Okubo T, Takata M. JFE Technical Report, 2016, 21, 7.
3 Senda K, Uesaka M, Yoshizaki S, et al. World Electric Vehicle Journal, 2019, 10(2), 31.
4 Wang S X, Wang Z L. Forum on Science and Technology in China, 2016(4), 63 (in Chinese).
汪守霞, 汪张林.中国科技论坛, 2016(4), 63.
5 Ramesh P, Lenin N C. IEEE Transactions on Magnetics, 2019, 55(11), 1.
6 He Z Z, Zhao Y, Luo H W. Electrical steels, Press of Metallurgy, China, 2012 (in Chinese).
何忠治, 赵宇, 罗海文.电工钢, 冶金工业出版社, 2012.
7 Bae B K, Chang S K, Woo J S. CAMP-ISIJ, 1996, 9, 450.
8 Petrovic D S. Materiali in Tehnologije, 2010, 44(6), 317.
9 Petrovic D S, Markoli B, Ceh M. Journal of Magnetism and Magnetic Materials, 2010, 322(20), 3041.
10 Mao W M, Yang P. Material science principles on electrical steel, Higher Education Press, China, 2013 (in Chinese).
毛卫民, 杨平.电工钢的材料学原理, 高等教育出版社,2013.
11 Chen X, Xie S Z, Wang B. In: The 6th Baosteel Biennial Academic Conference. Shanghai, 2015, pp. 1635 (in Chinese).
陈晓,谢世殊,王波.第六届宝钢学术年会论文集. 上海, 2015, pp. 1635.
12 Gong J, Luo H W. Journal of Materials Engineering, 2015, 43(6), 102 (in Chinese).
龚坚, 罗海文.材料工程, 2015, 43(6), 102.
13 Ren S X. Auto Electric Parts, 2018(11), 21 (in Chinese).
任寿萱.汽车电器, 2018(11), 21.
14 Komatsubara M, Sadahiro K, Kondo O, et al. Journal of Magnetism and Magnetic Materials, 2002, 242, 212.
15 Senda K, Namikawa M, Hayakawa Y. JFE Technical Report, 2004, 4, 67.
16 Zhang Z Y, Zhang F Q, Wang F L. Research on Iron and Steel, 2011, 39(6), 57 (in Chinese).
章仲禹, 张凤泉, 王飞龙. 钢铁研究, 2011, 39(6), 57.
17 Tietz M, Herget F, Von Pfingsten G, et al. In:2013 3rd International Electric Drives Production Conference (EDPC). Nuremberg, 2013, pp. 1.
18 Hong J, Choi H, Lee S, et al. Journal of Magnetism and Magnetic Materials, 2017, 439, 343.
19 Krings A, Boglietti A, Cavagnino A, et al. IEEE Transactions on Industrial Electronics, 2017, 64(3), 2405.
20 Zhang F Q, Hu W C. Electrical Steel, 2019, 1(2), 7.
张凤全, 胡文才.电工钢, 2019, 1(2), 7.
21 Kono M, Kono M, Honda A, et al. Jpn patent, JP2001234302, 2001.
22 Kubota T, WakizakaT. Jpn patent, JP2003342698, 2003.
23 Murakami H, Arita Y, Okada S, et al. Jpn patent, JP2005113185, 2005.
24 Murakami H. Jpn patent, JP2006070348, 2006.
25 Kubota T. Jpn patent, JP2006161137, 2006.
26 村上英邦. 中国专利, CNl863934, 2006.
27 有田吉宏, 村上英邦, 牛神义行, 等. 中国专利, CN102007226, 2011.
28 Kubota T, Fujikura M, Kurosaki Y. Jpn patent, JP2011184787, 2011.
29 Fujimura H, Tanaka I, Yashiki H. Jpn patent, JP2013036120, 2013.
30 Tanaka I, Yashiki H. IEEE Transactions on Magnetics, 2010, 46(2), 290.
31 张峰, 陈晓, 吕学钧, 等. 中国专利, CN102758150, 2012.
32 石文敏, 祝晓波, 冯大军, 等. 中国专利, CN102925816, 2013.
33 石文敏, 冯大军, 陈圣林, 等. 中国专利, CN105950960, 2016.
34 石文敏,詹东方, 杨光, 等. 中国专利, CN107587039, 2019.
35 Ghosh P, Chromik R R, Knight A M, et al. Journal of Magnetism and Magnetic Materials, 2014, 356, 42.
36 Shiozaki M, Kurosaki Y. Journal of Materials Engineering, 1989, 11(1), 37.
37 Barros J, Schneider J, Verbeken K, et al. Journal of Magnetism and Magnetic Materials, 2008, 320(20), 2490.
38 Kadyrzhanov K K, Rusakov V S, Fadeev M S, et al. Nanomaterials, 2019, 9(5), 757.
39 Mănescu V, Păltânea G, Gavrilă H. Physica B-condensed Matter, 2016, 486, 12.
40 Kestens L A I, Pirgazi H. Materials Science and Technology, 2016, 32(13), 1303.
41 Mun H, Heo N H, Koo Y M. Metallurgical and Materials Transactions A, 2018, 49(5), 1465.
42 Rodriguez B S P, Brice D, Mann J B, et al.In: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. Berlin, 2019, pp. 599.
43 Zhang B, Liang Y F, Wen S B, et al. Journal of Magnetism and Magne-tic Materials, 2019, 474, 51.
44 Kubota T. Steel Research International, 2005, 76(6), 464.
45 Fischer O, Schneider J. Journal of Magnetism and Magnetic Materials, 2003, 254, 302.
46 Nakanishi T, Koseki S, Oda Y, et al. US patent, US10006109, 2018.
47 Cardoso R F A, Brandao L, Cunha M A. Materials Research, 2008, 11(1), 51.
48 Kim J H, Kim J K, Han C H, et al. WIPO. patent, WO2009142401, 2009.
49 Nakanishi T, Koseki S, Oda Y, et al. WIPO. patent, WO2016024511, 2016.
50 Wang J H, Yang P, Mao W M. Steel Research International, 2019, 90(2), 1800320.
51 Schulte M, Steentjes S, Leuning N, et al. Journal of Magnetism and Magnetic Materials, 2019, 477, 372.
52 Schoen J W, Comstock R J. US patent, US7377986, 2008.
53 Petrovic D S, Mandrino D, Krajinovic S, et al. ISIJ International, 2006, 46(10), 1452.
54 Petrovic D S, Jenko M, Godec M, et al. Metalurgija, 2007, 46(2), 75.
55 Lee H Y, Hsiao I C, Tsai M C. China Steel Technical Report, 2015, 28, 1.
56 郭斌, 苏毅, 刘昌明, 等. 中国专利, CNl01003879, 2007.
57 Zhang T, Zhu H Q, Sun X D, et al. Electric Machines and Control, 2012, 16(6), 63 (in Chinese).
张涛, 朱熀秋, 孙晓东, 等.电机与控制学报, 2012, 16(6), 63.
58 Tanaka I, Yashiki H, Iwamoto S, et al. Journal of Iron and Steel Research, 2011, 23(6), 63 (in Chinese).
田中一郎, 屋铺裕义, 岩本繁夫, 等.钢铁研究学报, 2011, 23(6), 63.
59 Pan Z D, Xiang L, Zhang C, et al. Materials For Mechanical Enginee-ring, 2014, 38(4), 7(in Chinese).
潘振东, 项利, 张晨, 等. 机械工程材料, 2014, 38(4), 7.
60 Zhang F, Hu Z Y, Wang B. Electrical Engineering Materials, 2017(2), 9 (in Chinese).
张峰, 胡瞻源, 王波.电工材料, 2017(2), 9.
61 Huang J, Luo H W. Acta Metallurgica Sinica, 2018, 54(3), 377 (in Chinese).
黄俊, 罗海文. 金属学报, 2018, 54(3), 377.
62 An D Y, Liu G T, Ma J J, et al. In:The 8th International Conference on Magnetism and Metallurgy. Dresden, 2018, pp. 127.
63 Jiao H T, Qiu W Z, Xiong W, et al. Procedia Engineering, 2017, 207, 2078.
64 Jiao H T, Xu Y B, Xu H J, et al. Journal of Magnetism and Magnetic Materials, 2018, 462, 205.
65 Wang Y Q, Zhang X M, Zu G Q, et al. Journal of Magnetism and Magnetic Materials, 2018, 460, 41.
66 Stephenson E T, Marder A R. IEEE Transactions on Magnetics, 1986, 22(2), 101.
67 Zhang N, Yang P, Mao W M. Journal of Magnetism and Magnetic Materials, 2016, 397, 125.
68 De Oliveira Junior J R, Da Costa Paolinelli S, Dos Santos C P, et al. In:The 8th International Conference on Magnetism and Metallurgy. Dresden, 2018, pp. 206.
69 Zhu C Y, Huang L Y, Luo X Y, et al. Journal of Iron and Steel Research, 2020, 32(2), 117 (in Chinese).
朱诚意, 黄罗翼, 罗小燕, 等. 钢铁研究学报, 2020, 32(2), 117.
70 Kang Y L, Zhu G M. Iron & Steel, 2012, 47(2), 1 (in Chinese).
康永林, 朱国明.钢铁, 2012, 47(2), 1.
71 Jia C X, Dong Y L, Xiang L, et al. Iron & Steel, 2013, 48(1), 65 (in Chinese).
贾彩霞, 董廷亮, 项利, 等. 钢铁, 2013, 48(1), 65.
72 Kang Y L, Tian P, Zhu G M. Iron & Steel, 2019, 54(3), 1 (in Chinese).
康永林, 田鹏, 朱国明.钢铁, 2019, 54(3), 1.
73 Ma L, Xiang L, Qiu S T, et al. Materials For Mechanical Engineering, 2014, 38(1), 47 (in Chinese).
马良, 项利, 仇圣桃, 等. 机械工程材料, 2014, 38(1), 47.
74 Yu Y, Zheng X T. Continuous Casting, 2016, 41(5), 1 (in Chinese).
喻尧, 郑旭涛.连铸, 2016, 41(5), 1.
75 Zhang L J. Southern Metals, 2018(3), 3 (in Chinese).
张灵杰. 南方金属, 2018(3), 3.
76 Honda A, Senda K, Sadahiro K. Kawasaki Steel Technical report, 2003, 48, 33.
77 Oda Y, Kohno M, Honda A. Journal of Magnetism and Magnetic Mate-rials, 2008, 320(20), 2430.
78 Honda A, Fukuda B, Ohyama I, et al. Journal of Materials Engineering, 1990, 12(1), 41.
79 Takano Y, Takeno M, Hoshi N, et al. In: The 2010 International Power Electronics Conference. Sapporo, 2010, pp. 1801.
80 Hsiao I C, Huang Y S, Chen T R. In: 2009 CIMME Annual Convention. Taipei, 2009, pp. 47.
81 Pei R L, Zeng L B, Chen X, et al. Journal of Shanghai Jiaotong University (Science), 2012, 17(3), 319.
82 Shim H. IEEE Electrification Magazine, 2019, 7(1), 66.
83 Toda H, Oda Y, Kohno M, et al. Materia Japan, 2011, 50(1), 33.
84 Toda H, Oda Y, Kohno M, et al. IEEE Transactions on Magnetics, 2012, 48(11), 3060.
85 Pei R L, Gao L Y, Zeng L B. In: 2019 IEEE Transportation Electrification Conference and Expo(ITEC), Detroit, 2019, pp. 1.
86 Guo Y Y, Cai K K, Luo Z H, et al. Chinese Journal of Engineering, 2005, 27(4), 427(in Chinese).
郭艳永, 蔡开科, 骆忠汉, 等. 工程科学学报, 2005, 27(4), 427.
87 Samimi A A, Krause T W, Clapham L, et al. Journal of Nondestructive Evaluation, 2014, 33(4), 663.
88 Shen G T, Zheng Y, Jiang Z P, et al. Nondestructive Testing, 2016, 38(7), 66 (in Chinese).
沈功田, 郑阳, 蒋政培, 等.无损检测, 2016, 38(7), 66.
89 Prusty D, Pradhan H K, Hiwarkar V D, et al. Transactions of the Indian Institute of Metals, 2014, 67(1), 131.
90 Gallaugher M, Samimi A, Krause T W, et al. Metallurgical and Materials Transactions A, 2015, 46(3), 1262.
91 Odawara S, Fujisaki K, Matsuo T, et al. IEEJ Transactions on Industry Applications, 2015, 135(12), 1191.
[1] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[2] 欧珊, 牟自豪, 林涛, 李瑶, 冯威, 刘文龙. 两步法制备碳化钛薄膜及其电容性能[J]. 材料导报, 2021, 35(z2): 18-21.
[3] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[4] 艾兵, 包予佳, 张世超, 孙现凯, 孙浩然, 陶柳实, 王春朋. 氧化锌和氧化镁对磷酸盐胶黏剂吸潮性能的影响[J]. 材料导报, 2021, 35(z2): 72-74.
[5] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[6] 陶柳实, 李娜, 张世超, 王华, 潘传才, 艾兵, 王春朋. Al(H2PO4)3/Al2O3复合硬质材料吸湿改性研究[J]. 材料导报, 2021, 35(z2): 94-96.
[7] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[8] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[9] 郝培文, 李万军, 韩钰祥, 苏纪壮, 乐宸. 基于OT试验的乳化沥青冷再生面层混合料抗反射裂缝性能研究[J]. 材料导报, 2021, 35(z2): 150-157.
[10] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[11] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[12] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[13] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[14] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[15] 李书进, 刘源涛, 厉见芬, 盛炎民. 盾构废弃泥沙再生制备高性能注浆材料的试验研究[J]. 材料导报, 2021, 35(z2): 275-278.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed