Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23131-23141    https://doi.org/10.11896/cldb.20110244
  金属与金属基复合材料 |
电弧增材制造技术研究现状及展望
田根, 王文宇, 常青, 任智强, 王晓明, 朱胜
中国人民解放军陆军装甲兵学院再制造技术重点实验室,北京100072
Research Progress and Prospect of Wire and Arc Additive Manufacture
TIAN Gen, WANG Wenyu, CHANG Qing, REN Zhiqiang, WANG Xiaoming, ZHU Sheng
National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 10580KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电弧增材制造技术以其成形速度快、材料利用率高、生产成本低等优势,在航空航天、船舶制造、汽车工业等领域已取得广泛应用。本文首先介绍了电弧增材制造在质量调控方面的发展现状,包括工艺参数、基板和层间温度以及保护气体;其次,结合国内外最新研究成果,论述了沉积路径的发展情况,并对成形件的力学、疲劳、腐蚀性能进行了分析,介绍了电弧增材制造技术在大型化、整体化零部件制造中的典型应用;最后总结了电弧增材制造面临参数动态监测技术尚不成熟,成形工艺优化不够系统,标准制定不足,疲劳和腐蚀机理研究不够等主要挑战,并对其未来的发展趋势给出了相关建议,即建立参数控制数据库、开发新型材料、建立工艺流程库、完善软硬件系统等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田根
王文宇
常青
任智强
王晓明
朱胜
关键词:  电弧增材制造  质量调控  沉积路径  性能评价  典型应用    
Abstract: The wire and arc additive manufacture is widely used in aerospace and aeronautic, shipbuilding, automobile industry and other fields, due to the advantages of fast forming speed, high material utilization rate and low production cost. Firstly, the development status of the quality control for wire arc additive manufacture technology was introduced, including processing parameters, the temperature of the substrate and interlayer and shielding gas. Secondly, the development of the deposition paths was discussed by combining with the latest research at home and abroad, and the mechanics, fatigue, and corrosion properties of the formed parts were analyzed. Meanwhile, the typical applications of the wire arc additive ma-nufacture technology in the manufacture of large-scale and integrated parts were presented. Finally, the major challenges faced by the wire arc additive manufacture technology were summarized, such as the immature parameter dynamic monitoring technology, insufficient forming process optimization, inadequate standard formulation, and deficient fatigue and corrosion mechanism research. The suggestions were put forward for the future development trend of the wire arc additive manufacture technology, such as the establishment of the parameter control database, the development of the new materials, the establishment of the process database, and the perfection of the software and hardware system.
Key words:  wire and arc additive manufacture    properties control    deposition path    performance evaluation    typical application
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TG441  
基金资助: 国家重点研究发展计划项目(2018YFB1105800)
通讯作者:  kaolawwy@qq.com   
作者简介:  田根,2014年6月毕业于陆军装甲兵学院,获得工学学士学位。现为陆军装甲兵学院再制造技术重点实验室硕士研究生,在朱胜教授的指导下进行研究。目前主要研究领域为低碳钢电弧增材制造。
王文宇,陆军装甲兵学院装备再制造技术国防科技重点实验室研究实习员。2010年毕业于北京化工大学,工学硕士,主要从事增材再制造领域的研究工作。
引用本文:    
田根, 王文宇, 常青, 任智强, 王晓明, 朱胜. 电弧增材制造技术研究现状及展望[J]. 材料导报, 2021, 35(23): 23131-23141.
TIAN Gen, WANG Wenyu, CHANG Qing, REN Zhiqiang, WANG Xiaoming, ZHU Sheng. Research Progress and Prospect of Wire and Arc Additive Manufacture. Materials Reports, 2021, 35(23): 23131-23141.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110244  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23131
1 Roy R, Stark R, Tracht K, et al. The International Academy for Production Engineering Annals-Manufacturing Technology, 2016, 65, 667.
2 Anant P P, Kumar H. Materials Today: Proceedings, 2020, 21, 1689.
3 Chaudhary V, Yadav N M S K K, Mantri S A, et al. Journal of Alloys and Compounds,2020, 823, 153817.
4 Ayarkwa K F, Williams S, Ding J. International Journal of Rapid Manufacturing, 2015, 5(1), 44.
5 Tian Y B, Shen J Q,Hu S S, et al. Acta Metallurgica Sinica, 2019, 55(11),1407 (in Chinese).
田银宝, 申俊琦, 胡绳荪,等.金属学报, 2019, 55(11), 1407.
6 Li J Z, Alkahari M R, Rosli N A B, et al. International Journal of Automation Technology, 2019, 13(3), 346.
7 Huang J, Xu W H, Liu J, et al. Hot Working Technology, 2020, 49(5), 49 (in Chinese).
黄俊, 徐望辉, 刘静, 等.热加工工艺, 2020, 49(5), 49.
8 Xu F, Dhokia V, Colegrove P, et al. International Journal of Computer Integrated Manufacturing, 2018, 31(8), 785.
9 Liu J, Xu Y, Ge Y, et al. The International Journal of Advanced Manufacturing Technology, 2020, 111(1-2), 149.
10 Vimal K E K, Naveen S M, Rajak S. Materials Today: Proceedings, 2020,9,153.
11 Davis A E, Caballero A, Prangnell P B. Materialia,2020, 13, 100857.
12 Dirisu P, Supriyo G, Martina F, et al. International Journal of Fatigue,2020, 130, 105237.
13 Seow C E, Zhang J, Coules H E, et al. Additive Manufacturing, 2020, 36, 101578.
14 Xia C, Pan Z, Polden J, et al. Journal of Manufacturing Systems, 2020, 57, 31.
15 Asala G, Aandersson J, Ojo O A. Corrosion Science, 2019, 158, 108086.
16 Zhang L N, Ojo O A. Journal of Alloys and Compounds, 2020, 829, 154455.
17 Hackenhaar W, Mazzaferro J A E, Montevecchi F, et al. Journal of Ma-nufacturing Processes, 2020, 52, 58.
18 Ma Y, Hu Z, Tang Y, et al. Additive Manufacturing, 2020, 31, 100956.
19 Wang J, Lin X, Li J, et al. Materials Science and Engineering: A, 2020, 772, 138703.
20 Xue L, Xiao J, Nie Z, et al. Materials Science and Engineering: A, 2021, 800, 140310.
21 Cai X, Dong B, Yin X, et al. Additive Manufacturing, 2020, 35, 101344.
22 Zhang X Y, Wang K H, Zhou Q, et al. Materials Science and Enginee-ring a-Structural Materials Properties Microstructure and Processing, 2019, 762, 138097.
23 Ge J, Lin J, Chen Y, et al. Journal of Alloys and Compounds, 2018, 748, 911.
24 Davis A E, Breheny C I, Fellowes J, et al. Materials Science and Engineering: A, 2019, 765, 138289.
25 Caballero A, Ding J, Ganguly S, et al. Journal of Materials Processing Technology, 2019, 268, 54.
26 He Z, Hu Y,Qu H T, et al. Aerospace Manufacturing Technology, 2016(6), 11(in Chinese).
何智, 胡洋, 曲宏韬,等.航天制造技术, 2016(6), 11.
27 Hu Z Q, Qin X P, Shao T, et al. The International Journal of Advanced Manufacturing Technology,2018, 95(5-8), 2357.
28 Miller. Guidelines For Gas Metal Arc Welding (GMAW). USA, 2010.
29 Azwan M, Maleque M A, Rahman M M. Transactions of the Institute of Metal Finishing, 2019, 97(1), 12.
30 Liu Z M, Cui S L, Luo Z, et al. Journal of Manufacturing Processes, 2016, 23, 315.
31 Yildiz A S, Davut K, Koc B, et al. The International Journal of Advanced Manufacturing Technology, 2020, 108(11-12), 3391.
32 Liu L X. Study in deposition morphplogy and digital twin simulation of deposition process in wire and arc additive manufacturing. Master's Thesis, University of Sowth China, China, 2020 (in Chinese).
刘理想. 电弧增材制造堆积形貌研究及堆积过程数字孪生模拟. 硕士学位论文,南华大学, 2020.
33 Sun L, Jiang F, Huang R, et al. Journal of Manufacturing Processes, 2020, 56, 898.
34 Martina F, Mehnen J, Williams S W, et al. Journal of Materials Proces-sing Technology, 2012, 212(6), 1377.
35 Dinovitzer M, Chen X, Laliberte J, et al. Additive Manufacturing, 2019, 26, 138.
36 Liu D S, Lyu Y M,Yang H, et al. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(9), 1412 (in Chinese).
刘东帅, 吕彦明, 杨华,等.机械科学与技术, 2020, 39(9), 1412.
37 Wang X L, Wang A M, Li Y B. Journal of Materials Processing Technology, 2020, 282, 116649.
38 Gokhale N P, Kala P, Sharma V, et al. Journal of Mechanical Science and Technology, 2020, 34(2), 701.
39 Han Q L, Gao J, Han C L, et al. Welding in the World, 2021, 65(1), 35.
40 Dong J, Xu Y, Wang L D, et al. Foundry Technology, 2018, 39(8), 1764 (in Chinese).
董杰, 许燕, 王恪典, 等.铸造技术, 2018, 39(8), 1764.
41 Henckell P, Gierth M, Ali Y, et al. Materials, 2020, 13(11), 2491.
42 Qin W M, Wang K H, Ye Y H, et al. Hot Working Technology, 2019, 48(14), 58 (in Chinese).
秦伟铭, 王克鸿, 叶约翰, 等.热加工工艺, 2019, 48(14), 58.
43 Song E J. The research on controlling shape technology of low carbon steel based on MAG wire and arc additive manufacturing. Master's Thesis, Xiangtan University, China,2018 (in Chinese).
宋二军. 低碳钢MAG电弧增材制造控形技术研究. 硕士学位论文, 湘潭大学, 2018.
44 Zhang W M, Zhou X. Practical Electronics, 2017, 19, 59(in Chinese).
张文明, 周旭.电子制作, 2017, 19, 59.
45 Huang D, Zhu Z H, Geng H B, et al. Cailiao Gongcheng, 2017, 45(3), 66.
46 Xiong J, Lei Y, Li R. Applied Thermal Engineering, 2017, 126, 43.
47 Bai X W, Colegrove P, Ding J L, et al. International Journal of Heat and Mass Transfer, 2018, 124, 504.
48 Kozamernik N, Bracun D, Klobcar D. The International Journal of Advanced Manufacturing Technology, 2020, 110(7), 1955.
49 Ogino Y, Asai S, Hirata Y. Welding in the World, 2018, 62(2), 393.
50 Lei Y Y, Xiong J, Li R. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4), 1355.
51 Anis M, Derekar K, Lawrence J, et al. Matec Web of Conferences, 2019, 269, 5001.
52 Duang M W,Peng Y, Zhou Q, et al. Transactions of the China Welding Institution, 2018, 39(9), 113(in Chinese).
段梦伟, 彭勇, 周琦, 等.焊接学报, 2018, 39(9), 113.
53 Reisgen U, Sharma R, Mann S, et al. Welding in the World, 2020, 64(8), 1409.
54 Rodrigues T A, Duarte V, Miranda R M, et al. Materials, 2019, 12(7), 41.
55 Zhou Y J. Guangzhou Shipyard International Shipbuilding Technology, 2000(3), 20(in Chinese).
周业基.广船科技, 2000(3), 20.
56 Kah P, Salminen A, Martikainen J. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2011, 225(B7), 1073.
57 Jia S J. Machinist Metal Forming, 2014(6), 26(in Chinese).
贾时君.金属加工(热加工), 2014(6), 26.
58 Juric I, Garasic I, Busic M, et al. JOM, 2018, 71(2), 703.
59 Da Y L, Dong Q Y, Xiang L, et al. Journal of Materials Processing Technology, 2018, 259, 116.
60 Ding J, Colegrove P, Martina F, et al. Journal of Materials Processing Technology, 2015, 226, 99.
61 Mvola B, Kah P. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12), 2369.
62 Liu X J, Chen W. Journal of Netshape Forming Engineering, 2019, 11(3), 66(in Chinese).
刘小军, 陈伟.精密成形工程, 2019, 11(3), 66.
63 Ma G C, Zhao G, Li Z H, et al. The International Journal of Advanced Manufacturing Technology, 2019, 101(5-8), 1275.
64 Huang J, Guan Z, Yu S, et al. Materials Today Communications, 2020, 24, 101255.
65 Mehnen J, Ding J, Lockett H, et al. International Journal of Product Development, 2014, 19(1), 2.
66 Venturini G, Montevecchi F, Scippa A, et al. The International Academy for Production Engineering, 2016, 55, 95.
67 Zhang C, Shen C, Hua X M, et al. The International Journal of Advanced Manufacturing Technology, 2020, 111(3-4), 797.
68 Xiong Y, Park S I, Padmanathan S, et al. The International Journal of Advanced Manufacturing Technology, 2019, 105(10), 4159.
69 Mehnen J, Ding J, Lockett H, et al. Global Product Development. 2011,73, 721.
70 Zhao Y, Jia Y Z, Chen S J, et al. Additive Manufacturing, 2020, 32, 100935.
71 Lockett H, Ding J, Williams S, et al. Journal of Engineering Design, 2017, 28(7-9), 568.
72 Dong H D, Ze X P, Cuiuri D, et al.In: Proceedings of the 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), IEEE, 2015, pp. 2000.
73 Yuan L, Ding D H, Pan Z X, et al. Ieee Transactions on Industrial Informatics, 2020, 16(1), 454.
74 Jin W W, Zhang C Q, Jin S Y, et al. Applied Sciences-Basel, 2020, 10(5), 28.
75 Dai Y L, Yu S F, Huang A G, et al. International Journal of Minerals, Metallurgy and Materials, 2020, 27(7), 933.
76 Chandrasekaran S, Hari S, Amirthalingam M. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2020, 792(13), 139530.
77 Bhujangrao T, Veiga F, Suarez A, et al. Crystals, 2020, 10(8), 13.
78 Bambach M, Sizova I, Sydow B, et al. Journal of Materials Processing Technology, 2020, 282(8), 116689.
79 Wang S, Gu H M. Rare Metal Materials and Engineering, 2019, 48(9), 2910 (in Chinese).
王帅, 顾惠敏.稀有金属材料与工程, 2019, 48(9), 2910.
80 Wachter M, Leicher M, Hupka M, et al. Applied Sciences-Basel, 2020, 10(15), 22.
81 Xie Y, Gao M, Wang F, et al. Materials Science and Engineering: A, 2018, 709, 265.
82 Zhang J K, Wang X Y, Paddea S, et al. Materials & Design, 2016, 90, 551.
83 Zhang J K, Zhang X, Wang X Y, et al. Materials & Design, 2016, 104, 365.
84 Ron T, Levy G K, Dolev O, et al. Metals, 2020, 10(1), 98.
85 Rajesh Kannan A, Mohan K S, Pravin K N,et al. Materials Letters, 2020, 274, 127968.
86 Fatemi A, Molaei R, Phan N. International Journal of Fatigue, 2020, 134, 105479.
87 Yang J, Yang H, Yu H, et al. Metallurgical and Materials Transactions A, 2017, 48(7), 3583.
88 Wu B, Pan Z, Li S, et al. Corrosion Science, 2018, 137, 176.
89 Chen X, Li J, Cheng X, et al. Materials Science and Engineering: A, 2018, 715, 307.
90 Rajesh K A, Siva S N, Rajkumar V, et al. Materials Letters, 2020, 270, 127680.
91 Abe T, Sasahara H. Additive Manufacturing, 2019, 28, 639.
92 Zhang H R, Huang J J, Liu C M, et al. Materials, 2020, 13(16), 13.
93 Gradl P R, Protz C S. Acta Astronaut, 2020, 174, 148.
94 Oropeza D, Hofmann D C, Williams K, et al. Journal of Alloys and Compounds, 2020, 834, 8.
95 He T, Yu S, Shi Y, et al. Journal of Manufacturing Processes, 2020, 52, 96.
96 Nemani A V, Ghaffari M, Nasiri A. Additive Manufacturing, 2020, 32, 101086.
97 Tasdemir A, Nohut S. Ships Offshore Struct, 2020, 1, 18.
98 Queguineur A, Marolleau J, Lavergne A, et al. Welding in the World, 2020, 64(8), 1389.
99 Thapliyal S. Materials Research Express, 2019, 6(11), 112006.
[1] 朱兵钺, 林健, 雷永平, 符寒光, 张永强, 程四华. 410马氏体不锈钢块体材料的冷金属过渡焊电弧增材制造与性能表征[J]. 材料导报, 2021, 35(14): 14150-14155.
[2] 栗卓新, 祝静, 李红. 增材制造技术环境影响及其生命周期评价的研究进展[J]. 材料导报, 2021, 35(11): 11173-11179.
[3] 张金田, 王杏华, 王涛, 马晓蕾, 杨海欧. 电弧增材制造单道单层工艺特性研究[J]. 材料导报, 2020, 34(24): 24132-24137.
[4] 汪源, 汪苏平, 张亚利, 纪宪坤. 混凝土增粘剂的制备及应用性能研究[J]. 材料导报, 2019, 33(Z2): 283-287.
[5] 张喆, 方健, 席丽敏. 基于响应面优化的石蜡相变微胶囊的性能评价[J]. 材料导报, 2019, 33(24): 4181-4187.
[6] 余淑荣, 程能弟, 黄健康, 李楠, 樊丁. 旁路耦合微束等离子弧焊增材制造的热过程[J]. 材料导报, 2019, 33(1): 162-166.
[7] 王朝辉, 傅一, 陈谦, 陈宝, 周骊巍. 环氧沥青混凝土桥面铺装材料研究与应用进展[J]. 材料导报, 2018, 32(17): 2992-3009.
[8] 杨海欧,王健,王冲,魏雷,周颖惠,林鑫. 电弧增材制造TC4钛合金宏观晶粒演化规律[J]. 《材料导报》期刊社, 2018, 32(12): 2028-2031.
[9] 杨海欧,王健,周颖惠,王冲,林鑫. 电弧增材制造技术及其在TC4钛合金中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1884-1890.
[10] 王朝辉, 陈谦, 高志伟, 蒋婷婷, 陈姣. 浇注式沥青混凝土现状与发展*[J]. CLDB, 2017, 31(9): 135-145.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed