Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2028-2031    https://doi.org/10.11896/j.issn.1005-023X.2018.12.016
  材料研究 |
电弧增材制造TC4钛合金宏观晶粒演化规律
杨海欧,王健,王冲,魏雷,周颖惠,林鑫
西北工业大学凝固技术国家重点实验室,西安 710072
Macrostructure Evolution of TC4 Titanium Alloy Fabricated by Wire and Arc Additive Manufacturing
YANG Haiou, WANG Jian,WANG Chong, WEI Lei, ZHOU Yinghui, LIN Xin
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 2219KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于电弧增材制造是目前众多增材制造方法中的研究热点之一,且TC4是研究最广泛的钛合金,因此本工作研究了电弧增材制造TC4直壁墙的宏观组织演变。首先通过单道单层实验修正双椭球热源模型的形状参数,应用修正后的模型模拟四组直壁墙成形过程中的温度场及温度变化速率,通过模拟结果分析组织的演变规律。直壁墙底部为等轴晶组织,上部为柱状晶组织。低焊接电流有助于等轴晶的形成,但等轴晶区的尺寸及等轴晶的大小与线能量密度无关。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨海欧
王健
王冲
魏雷
周颖惠
林鑫
关键词:  电弧增材制造  TC4钛合金  数值模拟  宏观组织    
Abstract: As wire and arc additive manufacturing has been a hot area research among the many additive manufacturing met-hods, and TC4 is the most widely researched titanium alloy. Therefore the macrostructure evolution of the TC4 straight walls manufactured by WAAM was researched in this study. Firstly, the shape parameters of the double ellipsoidal heat source model were validated by single-track and single-layer experiments. The thermal field and thermal changing rate during the deposition process of the four straight walls were simulated using the modified model, and the evolution processes were analyzed by simulation results. The bottom of the straight wall are equiaxed grains and the upper part are columnar grains. The low welding current contributes to the formation of equiaxed grains, but the height of the equiaxed grain zone and the size of the equiaxed grains are independent of the line energy density.
Key words:  wire and arc additive manufacturing    TC4 titanium alloy    numerical simulation    macrostructure
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TG146  
基金资助: 国家重点研发计划(2016YFB0700301);中国航天科技集团公司航天科技创新基金资助项目
作者简介:  杨海欧:男,1976年生,博士,助理研究员,主要从事金属增材制造新材料与凝固组织控制方面的研究 E-mail:yanghaiou@nwpu.edu.cn
引用本文:    
杨海欧,王健,王冲,魏雷,周颖惠,林鑫. 电弧增材制造TC4钛合金宏观晶粒演化规律[J]. 《材料导报》期刊社, 2018, 32(12): 2028-2031.
YANG Haiou, WANG Jian,WANG Chong, WEI Lei, ZHOU Yinghui, LIN Xin. Macrostructure Evolution of TC4 Titanium Alloy Fabricated by Wire and Arc Additive Manufacturing. Materials Reports, 2018, 32(12): 2028-2031.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.016  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2028
1 Zhang Y M, Chen Y, Li P, et al. Weld deposition-based rapid prototyping: A preliminary study[J]. Journal of Materials Processing Technology,2003,135(2):347.
2 Zhang Y M, Chen Y, Li P, et al. Automated system for welding-based rapid prototyping[J]. Mechatronics,2002,12(1):37.
3 Wang H, Kovacevic R. Rapid prototyping based on variable polarity gas tungsten arc welding for a 5356 aluminium alloy[J]. Procee-dings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2001,215(11):1519.
4 Spencer J D, Dickens P M, Wykes C M. Rapid prototyping of the metal parts by three-dimensional welding[J]. Processings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,1998,212(3):175.
5 Baufeld B, Biest O. Effect of deposition parameters on mechanical properties of shape metal deposition parts[J]. Processing of the Institution of the Mechanical Engineers, Part B: Journal of Enginee-ring Manufacture,2012,226(1):126.
6 Wu B, Pan Z, Ding D, et al. The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy[J]. Journal of Materials Processing Technology,2018,258:97.
7 Shen C, Pan Z, Cuiuri D, et al. Influences of deposition current and interpass temperature to the Fe3Al-based iron aluminide fabricated using wire-arc additive manufacturing process[J]. International Journal of Advanced Manufacturing Technology,2016,88(5-8):1.
8 Ma Y, Cuiuri D, Hoye N, et al. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding[J]. Materials Science & Engineering A,2015,631:230.
9 Ding D, Pan Z, Cuiuri D, et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics & Computer-Integrated Manufacturing,2015,31:101.
10 Ding D, Pan Z, Cuiuri D, et al. Adaptive path planning for wire-feed additive manufacturing using medial axis transformation[J]. Journal of Cleaner Production,2016,133:942.
11 Wang J H. Research on shaped metal deposition of 2219 aluminum alloy by AC-TIG welding[D]. Harbin: Harbin Institute of Techno-logy,2015(in Chinese).
王计辉.2219铝合金交流TIG堆焊成型技术研究[D].哈尔滨:哈尔滨工业大学,2015.
12 Ding D P. A Study on welding robot based rapid prototyping system and the forming principles[D]. Wuhan: Huazhong University of Science and Technology,2005(in Chinese).
丁冬平.基于焊接机器人的熔焊成形系统及成形规律的研究[D].武汉:华中科技大学,2005.
13 Geng H, Xiong J, Huang D, et al. A prediction model of layer geometrical size in wire and arc additive manufacture using response surface methodology[J]. International Journal of Advanced Manufacturing Technology,2015,93:1.
14 Hu R H. Research on the planning of deposit trajectory for welding prototyping based on TIG building-up technology[D]. Nanchang: Nanchang University,2007(in Chinese).
胡瑢华.基于TIG堆焊技术的熔焊成型轨迹规划研究[D].南昌:南昌大学,2007.
15 Du N C. Study on metal rapid prototyping based on arc welding robot[D].Tianjin: Tianjin University,2009(in Chinese).
杜乃成.弧焊机器人金属快速成形研究[D].天津:天津大学,2009.
16 Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A,2013,44(2):968.
17 Ding. Thermo-mechanical analysis of wire and arc additive manufacturing process[D].Bedfordshire: Cranfield University,2012.
18 Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B,1984,15(2):299.
19 王煜,赵海燕,吴甦,等.高能束焊接双椭球热源模型参数的确定[J].焊接学报,2003,24(2):67.
20 Goldak J, Bibby M, Moore J, et al. Computer modeling of heat flow in welds[J]. Metallurgical Transactions B,1986,17(3):587.
21 张朝晖.ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007:19.
22 Martina F. Investigation of methods to manipulate geometry, microstructure and mechanical properties in titanium large scale wire+arc additive manufacturing[D].Bedfordshire: Cranfield University,2014.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[6] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[7] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[8] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[9] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[10] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[11] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[12] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[13] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[14] 余淑荣, 程能弟, 黄健康, 李楠, 樊丁. 旁路耦合微束等离子弧焊增材制造的热过程[J]. 材料导报, 2019, 33(1): 162-166.
[15] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed