Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2032-2037    https://doi.org/10.11896/j.issn.1005-023X.2018.12.017
  材料研究 |
分散相含量对乙烯-醋酸乙烯酯共聚物/聚丙烯原位微纤复合 材料微纤形态、结晶行为及流变和力学性能的影响
张婷婷1,2,董珈豪2,王蒙1,2,韦良强2,秦舒浩1,2
1 贵州大学材料与冶金学院,贵阳 550025;
2 国家复合改性聚合物材料工程技术研究中心,贵阳 550014
Dispersed Phase Content of Ethylene-vinyl Acetate Copolymer/Polypropylene (EVA/PP) In-situ Microfibrillar Composites (MFCs): Influences to Microfiber Morphology, Crystallization Behavior, Rheological and Mechanical Properties
ZHANG Tingting1,2, DONG Jiahao2, WANG Meng1,2,WEI Liangqiang2, QIN Shuhao1,2
1 College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025;
2 National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014
下载:  全 文 ( PDF ) ( 3675KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用微纳层叠共挤出装置成功制得EVA/PP原位微纤复合材料(MFCs),并对其微纤形态、力学性能、结晶性能和流变行为进行了研究。结果表明:PP在EVA中能够形成微纤,且随PP含量增加,直径较大的微纤数量显著增多,MFCs的储能模量(G′)和损耗模量(G″)都相应增大。且当PP含量低于10%(质量分数,下同)时,复合材料体系是部分相容的,但当PP含量超过10%时,体系发生相分离现象。PP微纤能够有效提高EVA的拉伸强度。当PP含量为20%时,拉伸强度最大,为16.71 MPa, 比纯EVA树脂提高了42.9%。差示扫描量热法(DSC)测试显示PP微纤会阻碍EVA的结晶行为,使MFCs的结晶度降低。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张婷婷
董珈豪
王蒙
韦良强
秦舒浩
关键词:  微纤形态  力学性能  结晶行为  流变性能  分散相  乙烯-醋酸乙烯酯(EVA)共聚物  聚丙烯  微纤复合材料(MFCs)    
Abstract: A series of ethylene-vinyl acetate copolymer/polypropylene (EVA/PP) in-situ microfibrillar composites (MFCs) differed in dispersed phase (i.e. PP) content were prepared using a multistage stretching extruder with an assembly of laminating-multiplying elements (LMEs), and the products’ microfibers morphology, crystallization behaviors, mechanical and dynamic rheological performances were studied. The results showed that PP could form microfibers in situ in EVA, and more PP content would lead to obviously more large-diameter microfibers and higher storage modulus (G′) and loss modulus (G″) of the MFCs. The systems with PP contents below 10wt% were partially compatible, while the phase separation occurred in systems with PP contents over 10wt%. PP microfibers could enhance the tensile performance of EVA effectively, as the EVA/20wt%PP MFCs owned the maximum tensile strength of 16.71 MPa, which was 42.9% higher than that of pure EVA. We also observed an obstructive effect of PP microfibers on the crystallization behavior of EVA, which consequently attenuates the crystallinity of the MFCs.
Key words:  microfiber morphology    mechanical properties    crystallization behavior    rheological properties    dispersed phase    ethylene-vinyl acetate (EVA) copolymer    polypropylene    microfibrillar composites (MFCs)
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TQ325.1  
基金资助: 国家自然科学基金(51363002)
作者简介:  张婷婷:女,1992年生,硕士研究生,主要从事聚合物共混改性及研究 秦舒浩:通信作者,男,1975年生,博士,研究员,主要从事聚合物结构与性能方面的研究 E-mail:qinshuhao@126.com
引用本文:    
张婷婷,董珈豪,王蒙,韦良强,秦舒浩. 分散相含量对乙烯-醋酸乙烯酯共聚物/聚丙烯原位微纤复合 材料微纤形态、结晶行为及流变和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2032-2037.
ZHANG Tingting, DONG Jiahao, WANG Meng,WEI Liangqiang, QIN Shuhao. Dispersed Phase Content of Ethylene-vinyl Acetate Copolymer/Polypropylene (EVA/PP) In-situ Microfibrillar Composites (MFCs): Influences to Microfiber Morphology, Crystallization Behavior, Rheological and Mechanical Properties. Materials Reports, 2018, 32(12): 2032-2037.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.017  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2032
1 Wu W J, Ren W T, Yu H Y, et al. Ethylene-vinyl acetate rubber based blends[J]. Polymer Materials Science & Engineering,2014,30(2):186(in Chinese).
吴文敬,任文坛,禹海洋,等.乙烯-醋酸乙烯酯橡胶的共混改性[J].高分子材料科学与工程,2014,30(2):186.
2 Yang G, Li Q C, Li Y M, et al. Capability and application of poly (ethylene-co-vinyl acetate) (EVA)[J]. Chinese Journal of Colloid & Polymer,2009,27(3):45(in Chinese).
杨钢,李启成,李雅明,等.乙烯-乙酸乙烯酯共聚物(EVA)的性能及应用[J].胶体与聚合物,2009,27(3):45.
3 Li X F, Huang L G, Hu H W, et al. Studies on rheological properties of ethylenevinyl-acetate copolymer[J]. Polymer Materials Science & Engineering,2007,23(6):124(in Chinese).
李新法,黄灵阁,胡宏伟,等.乙烯-醋酸乙烯共聚物的流变性能[J].高分子材料科学与工程,2007,23(6):124.
4 Fu M. Research of EVA modified by blending[D]. Guangzhou: Guangdong University of Technology,2014(in Chinese).
付蒙.EVA的共混改性研究[D].广州:广东工业大学,2014.
5 Gabor Kiss. In situ composites: Blends of isotropic polymers and thermotropic liquid crystalline polymers[J]. Polymer Engineering & Science,1987,27(6):410.
6 Weiss R A, Wansoo Huh, Nicolais L. Novel reinforced polymers based on blends of polystyrene and a thermotropic liquid crystalline polymer[J]. Polymer Engineering & Science,1987,27(9):684.
7 Li Z M, Quan H, Yang M B, et al. Research advance in thermoplastics/thermoplastics in-situ microfibrillar reinforced blends[J]. China Plastics,2005(10):1(in Chinese).
李忠明,权慧,杨鸣波,等.TP/TP原位微纤化共混物的研究进展[J].中国塑料,2005(10):1.
8 Huang Ying, He Yadong, Ding Weidan,et al. Improved viscoelastic, thermal, and mechanical properties of in situ microfibrillar polypropylene/polyamide 6,6 composites via direct extrusion using a triple-screw extruder[J]. RSC Advances,2017,7(9):5030.
9 Jayanarayanan K, Sabu Thomas,Kuruvilla Joseph. Morphology, static and dynamic mechanical properties of in situ microfibrillar composites based on polypropylene/poly (ethylene terephthalate) blends[J]. Composites Part A Applied Science & Manufacturing,2008,39(2):164.
10 Xu H S, Li Z M, Yang S Y,et al. Rheological behavior comparison between PET/HDPE and PC/HDPE microfibrillar blends[J]. Polymer Engineering & Science,2005,45(9):1231.
11 Yi X, Xu L, Wang Y L,et al. Morphology and properties of isotactic polypropylene/poly(ethylene terephthalate) in situ microfibrillar reinforced blends: Influence of viscosity ratio[J]. European Polymer Journal,2010,46(4):719.
12 Sun X, Yu Q,Shen J, et al. In situ microfibrillar morphology and properties of polypropylene/polyamide/carbon black composites prepared through multistage stretching extrusion[J]. Journal of Mate-rials Science,2013,48(3):1214.
13 Li T, Li J, Zhang Y Q, et al. Structure and properties of (PP+ EVOH) PP barrial prepared by microlayer coextrusion[J]. Acta Polymerica Sinica,2009,1(12):1226(in Chinese).
李婷,李姜,张玉清,等.微层共挤出(PP+EVOH)/PP阻隔材料的结构与性能研究[J].高分子学报,2009,1(12):1226.
14 Wang M, Guo S Y. Stratified fuctional composites with micrometer or nanometer scale thickness prepared by a new processing technology[J]. Engineering Plastics Application,2008,36(11):83(in Chinese).
王明,郭少云.微纳多层功能复合材料的制备新技术[J].工程塑料应用,2008,36(11):83.
15 Dong J, Qi Y, Sun J,et al. In situ fibrillation of poly(trimethylene terephthalate) in polyolefin elastomer through multistage stretching extrusion[J]. Journal of Applied Polymer Science,2016,133(33):43797.
16 Li Z M, Yang W, Xie B H, et al. Theoretical consideration of the droplet-fiber transition in blends and preparation of in-situ microfiber-contained polymer blends[J]. Polymer Materials Science & Engineering,2003,19(5):168(in Chinese).
李忠明,杨伟,谢邦互,等.GEP/PO原位微纤化共混物的制备[J].高分子材料科学与工程,2003,19(5):168.
17 Dong J H, Qi Y H, Wei L Q, et al. Research progress on in-situ fibrillation technology[J]. Modern Chemical Industry,2015,35(2):23(in Chinese).
董珈豪,戚远慧,韦良强,等.原位成纤技术研究进展[J].现代化工,2015,35(2):23.
18 Wang J,Zhang X, Zhao T, et al. Morphologies and properties of polycarbonate/polyethylene in situ microfibrillar composites prepared through multistage stretching extrusion[J]. Journal of Applied Polymer Science,2014,131(131):2113.
19 Zhang D,He M,Qin S, et al. Rheology characterization, dynamic mechanical, thermal, and mechanical properties of LGF/TPU/PBT/PTW composites[J]. Polymer Composites,2016,DOI:10.1002/PC.
20 Xu E H, Guo Q C, Chen L, et al. Effect of the desperation of hectorite on the rheological behaviors of nylon 6 nanocomposites[J]. Polymer Materials Science & Engineering,2015,31(9):69(in Chinese).
许恩惠,郭前程,陈磊,等.锂皂石分散状态对尼龙6纳米复合材料流变行为的影响[J].高分子材料科学与工程,2015,31(9):69.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed