Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14150-14155    https://doi.org/10.11896/cldb.20050144
  金属与金属基复合材料 |
410马氏体不锈钢块体材料的冷金属过渡焊电弧增材制造与性能表征
朱兵钺1, 林健1,*, 雷永平1, 符寒光1, 张永强2, 程四华2
1 北京工业大学材料科学与工程学院,北京 100124
2 首钢技术研究院,北京 100043
Preparation and Characterization of Martensitic Stainless Steel 410 Block Parts by CMT Wire Arc Additive Manufacturing
ZHU Bingyue1, LIN Jian1,*, LEI Yongping1, FU Hanguang1, ZHANG Yongqiang2, CHENG Sihua2
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
2 Shougang Research Institute of Technology, Beijing 100043, China
下载:  全 文 ( PDF ) ( 5623KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电弧增材制造具有效率高、成本低和不受成形尺寸限制等独特优势,在新型制造、修复领域拥有良好的应用前景。获得力学性能良好、显微组织均匀的电弧增材制造件是目前急需解决的问题。通过冷金属过渡焊(CMT)丝材电弧增材制造系统,制备了两种410马氏体不锈钢块体材料。光学显微镜(OM)、扫描电镜(SEM)和力学性能测试结果表明,现有工艺可制备显微组织均匀、硬度平均值为530HV、抗拉强度平均值为1 196 MPa且延伸率均匀的沉积件。本工作还探讨分析了电弧增材制造件的力学性能特点及成因,并与锻造、激光增材制造等方法制得的H13热作模具钢的力学性能进行比较,分析了电弧增材制造件的性能与其他方法制备的工件性能存在差异的原因,考察了冷金属过渡电弧增材制造410不锈钢在修复件中使用的可行性,阐述了提升电弧增材制造件力学性能的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱兵钺
林健
雷永平
符寒光
张永强
程四华
关键词:  电弧增材制造(WAAM)  冷金属过渡焊(CMT)  410马氏体不锈钢(SS 410)  力学性能    
Abstract: Wire arc additive manufacturing (WAAM) has unique advantages of high efficiency, low cost and no limitation of forming size, showing application prospects in the field of novel manufacturing and repair. Obtaining WAAM parts with good mechanical properties and uniform microstructure is the problem that needs to be solved urgently. In this study, two kinds of martensitic stainless steel 410 (SS 410) block parts were prepared by wire and arc additive manufacturing system based on cold metal transfer (CMT). The results of optical microscope (OM), scanning electron microscope (SEM) and mechanical properties test showed that the as-deposited parts with uniform microstructure, average hardness of 530HV, average tensile strength of 1 196 MPa and uniform elongation can be obtained. The mechanical properties of as-deposited parts were discussed, and compared with wrought and laser additive manufacturing H13 hot work die steel. This work analyzed reasons for the difference between the properties of WAAM parts and forgings, examined the feasibility of using as-deposited stainless steel 410 in repairing, and explained the ways to improving mechanical properties of WAAM parts.
Key words:  wire arc additive manufacturing (WAAM)    cold metal transfer (CMT)    martensitic stainless steel 410 (SS 410)    mechanical property
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TG142.1  
基金资助: 国家重点研发计划(2017YFB1104803);国家自然科学基金(51005004);北京市自然科学基金(3132006)
通讯作者:  * linjian@bjut.edu.cn   
作者简介:  朱兵钺,硕士研究生,于2018年9月在北京工业大学材料科学与工程学院开始硕士研究生阶段的学习,主要从事电弧增材制造技术的研究。
林健,北京工业大学教授。2006年于清华大学机械工程系获材料加工工程专业博士学位,2006年9月至2008年8月于北京工业大学材料科学与工程学院从事博士后研究工作,2008年9月进入北京工业大学材料学院工作。2015年至2016年在美国密苏里科技大学访学一年。2011年、2013年和2018年在日本大阪大学结合科学研究所进行短期访问研究工作。研究领域现包括材料加工中的应力变形分析、微电子组装材料及结构可靠性研究。在国内外重要期刊发表文章50多篇,申请专利10余项。
引用本文:    
朱兵钺, 林健, 雷永平, 符寒光, 张永强, 程四华. 410马氏体不锈钢块体材料的冷金属过渡焊电弧增材制造与性能表征[J]. 材料导报, 2021, 35(14): 14150-14155.
ZHU Bingyue, LIN Jian, LEI Yongping, FU Hanguang, ZHANG Yongqiang, CHENG Sihua. Preparation and Characterization of Martensitic Stainless Steel 410 Block Parts by CMT Wire Arc Additive Manufacturing. Materials Reports, 2021, 35(14): 14150-14155.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050144  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14150
1 Li M X, Zhang T, Yu F, et al. Aeronautical Manufacturing Technology, 2019, 62(17), 55 (in Chinese).
李明祥, 张涛, 于飞, 等. 航空制造技术, 2019, 62(17), 55.
2 Huang Y J, Liu J H, Yang J H, et al. China Metallurgy, 2019, 29(11), 6(in Chinese).
黄永建, 刘军会, 杨进航, 等. 中国冶金, 2019, 29(11), 6.
3 Guan Q. Welding & Joining, 2014(5), 1(in Chinese).
关桥. 焊接, 2014(5), 1.
4 Han T Y, Kuo C H, Sridharan N, et al. Materials Science & Engineering A, 2020, 769, 2.
5 Shen H Y, Chen H B. Journal of Shanghai Jiaotong University, 2016, 50(S1), 114(in Chinese).
沈鸿源, 陈华斌. 上海交通大学学报, 2016, 50(S1), 114.
6 Zhang J S, Xiao G Q, Deng C Y. Forging & Stamping Technology, 2020(7), 165(in Chinese).
张建生, 肖贵乾, 邓长勇. 锻压技术, 2020(7), 165.
7 Guo Z L, Lasne P, Saunders N, et al. Procedia Manufacturing, 2018,15, 372.
8 Ge J G, Lin J, Lei Y P, et al. Materials Science & Engineering A, 2018,715, 144.
9 Yan J J, Song H, Dong Y P, et al. Materials Science & Engineering A, 2020,773, 138845.
10 Yan K, Chen C J, Zhang M, et al. China Surface Engineering, 2017, 30(2), 134(in Chinese).
严凯, 陈长军, 张敏, 等. 中国表面工程, 2017, 30(2), 134.
11 Zhang J X, Huang J F, Wang H B, et al. Acta Metallurgica Sinica, 2014, 50(7), 787 (in Chinese).
张金祥, 黄进峰, 王和斌, 等. 金属学报, 2014, 50(7), 787.
12 Pei Y K, Ma D S, Liu B S, et al. Iron & Steel, 2012, 47(2), 81(in Chinese).
裴悦凯,马党参,刘宝石, 等. 钢铁, 2012, 47(2), 81.
13 Wang T T, Zhang Y B, Wu Z H, et al. Vacuum, 2018,149, 185.
14 Seluck C. Powder Metallurgy, 2013, 54(2), 94.
15 Lin P, Ma D S, Chi H X, et al. Materials for Mechanical Engineering, 2017, 41(Z2),1(in Chinese).
林鹏, 马党参, 迟宏宵, 等. 机械工程材料, 2017, 41(Z2),1.
16 Zheng D L. Fabrication of H13 steel by selective laser melting and resi-dual stress analysis. Master's Thesis, Harbin Institute of Technology, China, 2016(in Chinese).
郑东来. H13钢的选择性激光熔化制备及残余应力分析. 硕士学位论文, 哈尔滨工业大学, 2016.
17 Džugan J, Halmešová K, Ackermann M,et al. Thermochimica Acta, 2020,683, 178479.
18 Huang J F, Cai Y L, Yu Y P, et al. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 33(1), 28(in Chinese).
黄进峰, 蔡玉丽, 于一鹏, 等. 北京科技大学学报, 2011, 33(1), 28.
19 Zhao L, Wei S T, Wu D, et al. Journal of Materials Science & Technology, 2020, 57, 33.
20 Yang K, Liang Y, Yan W, et al. Acta Metallurgica Sinica, 2020, 56(1), 53(in Chinese).
杨柯, 梁烨, 严伟, 等. 金属学报, 2020, 56(1), 53.
21 Sun X. Electric Welding Machine, 2019, 49(8), 14(in Chinese).
孙咸. 电焊机, 2019, 49(8), 14.
22 Li Q, Zhao G R, Ma W Y, et al. Materials Reports B:Research Papers, 2020, 34(2), 4073(in Chinese).
李卿, 赵国瑞, 马文有, 等. 材料导报:研究篇, 2020, 34(2), 4073.
23 Wang W Q, Li Y Q, Li X, et al. Materials Reports B:Research Papers, 2020, 34(1), 2077(in Chinese).
王文权, 李雅倩, 李欣, 等. 材料导报:研究篇, 2020, 34(1), 2077.
24 Liu Y B, Jin P, Wang J F, et al. Aeronautical Manufacturing Technology, 2019, 62(Z1), 58(in Chinese).
刘一搏, 靳鹏, 王建峰, 等. 航空制造技术, 2019, 62(Z1), 58.
25 Åsberg M, Fredriksson G, Hatami S, et al. Materials Science & Engineering A, 2018, 742, 584.
26 Wołosz P, Baran A, Polański M. Journal of Alloys and Compounds, 2020,823, 153840.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed