Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1884-1890    https://doi.org/10.11896/j.issn.1005-023X.2018.11.016
  材料综述 |
电弧增材制造技术及其在TC4钛合金中的应用研究进展
杨海欧,王健,周颖惠,王冲,林鑫
西北工业大学凝固技术国家重点实验室,西安 710072
Wire and Arc Additive Manufacturing Technology and Its Application in TC4 Titanium Alloy: a Review
YANG Haiou, WANG Jian, ZHOU Yinghui, WANG Chong, LIN Xin
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 2714KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 增材制造是于20世纪80年代中期发展起来的一门新兴技术,因能快速精确地制造出形状复杂的结构件而受到广泛关注。电弧增材制造是以电弧为热源,采用逐层堆焊的方式制造出致密的金属构件,具有制造成本低廉、成形效率高的突出特点,在大尺寸、复杂零件的快速成形技术中表现出明显的优势,因而在航空航天、汽车船舶等领域有广阔的应用前景。TC4的化学活性高、热导率低、强度高,具有优异的综合力学性能,是应用最广泛的钛合金。TC4并不适合采用传统的加工方法制备,因此采用电弧增材制造的方法成形TC4结构件。但成形件典型的宏观组织为外延生长的柱状晶,导致其力学性能存在各向异性。本文综述了电弧增材制造的发展历史,结合该技术的特征及国内外研究现状,介绍了电弧增材制造TC4钛合金成形件的组织及性能方面的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨海欧
王健
周颖惠
王冲
林鑫
关键词:  电弧增材制造  TC4钛合金  宏观/微观组织  力学性能    
Abstract: Additive manufacturing as a novel technology have developed since the middle of 1980s. More and more people focus on this technology since it can produce complex structures quickly and accurately. Wire and arc additive manufacturing technology adopts arc as heat source, and deposits the materials layer by layer. High deposition rates, low material and equipment costs, and the advantages in manufacturing large and complexity components that make wire and arc additive manufacturing technology widely used in aerospace industry, automobiles and ships. TC4 has become the most widely used titanium alloy due to the excellent comprehensive properties. The properties such as low thermal conductivity, high strength and high chemical activity of TC4, which make it difficult to fabricate the components by traditional manufacturing technologies. Therefore, the TC4 is manufactured by WAAM. Ho-wever, the typical macrostructure of the WAAMed components is the epitaxially grown columnar grain, which leads to anisotropy in its mechanical properties. In present work, the development history of wire and arc additive manufacturing technology is introduced. Combining its characteristics and the research status at home and abroad, the study on the microstructure and mechanical properties of TC4 titanium alloy manufactured by wire and arc additive manufacturing technology is introduced.
Key words:  wire and arc additive manufacturing    TC4 titanium alloy    macro/microstructure    mechanical properties
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TG146  
基金资助: 国家重点研发计划(2016YFB0700301);中国航天科技集团公司航天科技创新基金
作者简介:  杨海欧:男,1976年生,助理研究员,主要从事金属增材制造新材料与凝固组织控制方面的研究 E-mail:yanghaiou@nwpu.edu.cn
引用本文:    
杨海欧,王健,周颖惠,王冲,林鑫. 电弧增材制造技术及其在TC4钛合金中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1884-1890.
YANG Haiou, WANG Jian, ZHOU Yinghui, WANG Chong, LIN Xin. Wire and Arc Additive Manufacturing Technology and Its Application in TC4 Titanium Alloy: a Review. Materials Reports, 2018, 32(11): 1884-1890.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.016  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1884
1 Xiong J. Forming characteristics in multi-layer single-bead GMA additive manufacturing and control for deposition dimension[D].Harbin: Harbin Institute of Technology,2014(in Chinese).
熊俊.多层单道GMA增材制造成形特性及熔敷尺寸控制[D].哈尔滨:哈尔滨工业大学,2014.
2 Lutjering G, Williams J C. Titanium[M].2nd ed.Berlin:Springer,2007.
3 Leyens C, Peters M. Titanium and titanium alloys[M].Wiley Online Library,2003.
4 Dai S J, Zhu Y T, Chen F. Present status and processing methods of novel β titanium alloys for biomedical applications[J]. Journal of Chongqing University of Technology(Natural Science),2016,30(4):27(in Chinese).
戴世娟 ,朱运田, 陈锋. 新型医用β钛合金研究的发展现状及加工方法[J].重庆理工大学学报(自然科学版),2016,30(4):27.
5 Brandl E, Michailov V, Viehweger B, et al. Deposition of Ti-6Al-4V using laser and wire, part Ⅱ: Hardness and dimensions of single beads[J].Surface & Coatings Technology,2011,206(6):1130.
6 Mughal M P, Fawad H, Mufti R A. Three-dimensional finite-element modelling of deformation in weld-based rapid prototyping[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2006,220(6):875.
7 Li C, Zhu S, Shen C D, et al.Present state and development trend of welding rapid forming technology[J].China Surface Engineering,2009,22(3):7(in Chinese).
李超,朱胜,沈灿铎,等.焊接快速成形技术的研究现状与发展趋势[J].中国表面工程,2009,22(3):7.
8 Song Y A, Park S, Choi D, et al. 3D welding and milling: Part Ⅰ—A direct approach for freeform fabrication of metallic prototypes[J].International Journal of Machine Tools & Manufacture,2005,45(9):1057.
9 Ralph B. Method of making decorative articles: US,1533300[P].1925-04-14.
10 Baufeld B, Biest O, Gault R. Microstructure and mechanical properties of Ti-6Al-4V components fabricated by shaped metal deposition[C]∥19th AeroMat Conference & Exposition. Austin,2008.
11 Ribeiro F. 3D printing with metals[J].Computing & Control Engineering Journal,1998,9(1):31.
12 Ribeiro F, Norrish J. Making components with controlled metal de-position[C]∥International Symposium on Industrial Electronics. Guimaraes, Portugal,1997:831.
13 Kassmaul K, Schoch F W, Lucknow H. High quality large components ‘shape welded’ by a SAW process[J].Welding Journal,1983,62(9):17.
14 Xun J, Xue Y G, Chen H, et al. Status and development prospects of forming control technology in arc-based additive manufacturing[J].Electric Welding Machine,2015,45(9):45(in Chinese).
熊俊,薛永刚,陈辉,等.电弧增材制造成形控制技术的研究现状与展望[J].电焊机,2015,45(9):45.
15 Guo C B, Hu L R, Hu D D, et al. 3D Printing technology and recent application in military fields[J].Tactical Missile Technology,2013,6(6):1(in Chinese).
郭朝邦,胡丽荣,胡冬冬,等.3D打印技术及其军事应用发展动态[J].战术导弹技术,2013,6(6):1.
16 Irving B. How those million-dollar research projects are improving the state of the art of welding[J].Welding Journal,1993,72(6):61.
17 Doyle T E. Shape melting technology[C]∥Proceedings of the Third International Conference on Desktop Manufacturing: Making Rapid Prototyping Pay Back.1991.
18 Doyle T E, Ryan P M. Method and apparatus for automatic vapor cooling whenshape melting a component: US,4857694[P].1989-08-15.
19 Wang H, Kovacevic R. Rapid prototyping based on variable polarity gas tungsten arc welding for a 5356 aluminium alloy[J].Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,2001,215(11):1519.
20 Zhang Y M, Chen Y, Li P, et al. Weld deposition-based rapid prototyping:A preliminary study[J].Journal of Materials Processing Technology,2003,135(2):347.
21 Zhang Y M, Chen Y, Li P, et al. Automated system for welding-based rapid prototyping[J].Mechatronics,2002,12(1):37.
22 Spencer J D, Dickens P M, Wykes C M. Rapid prototyping of the metal parts by three-dimensional welding[J].Processings of the institution of mechanical engineers, Part B: Journal of Engineering Ma-nufacture,1998,212(3):175.
23 Baufeld B, Biest O. Effect of deposition parameters on mechanical properties of shape metal deposition parts[J].Processing of the Institution of the Mechanical Engineers, Part B: Journal of Engineering Manufacture,2012,226(1):126.
24 Wu B, Pan Z, Ding D, et al. The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy[J].Journal of Materials Processing Technology,2018,258:97.
25 Shen C, Pan Z, Cuiuri D, et al. Influences of deposition current and interpass temperature to the Fe3Al-based iron aluminide fabricated using wire-arc additive manufacturing process[J].International Journal of Advanced Manufacturing Technology,2016,88(5-8):1.
26 Ma Y, Cuiuri D, Hoye N, et al. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding[J].Materials Science & Engineering A,2015,631:230.
27 Ding D, Pan Z, Cuiuri D, et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J].Robotics & Computer-Integrated Manufacturing,2015,31:101.
28 Ding D, Pan Z, Cuiuri D, et al. Adaptive path planning for wire-feed additive manufacturing using medial axis transformation[J].Journal of Cleaner Production,2016,133:942.
29 Wang J H. Research on shaped metal deposition of 2219 aluminum alloy by AC-TIG welding[D].Harbin: Harbin Institute of Technology,2015(in Chinese).
王计辉.2219铝合金交流TIG堆焊成型技术研究[D].哈尔滨:哈尔滨工业大学,2015.
30 Ding D P. Astudy on welding robot based rapid prototyping system and the forming principles[D].Wuhan: Huazhong University of Science and Technology,2005(in Chinese).
丁冬平.基于焊接机器人的熔焊成形系统及成形规律的研究[D].武汉:华中科技大学,2005.
31 Geng H, Xiong J, Huang D, et al. A prediction model of layer geometrical size in wire and arc additive manufacture using response surface methodology[J].International Journal of Advanced Manufactu-ring Technology,2017,93(1-4):175.
32 Hu R H. Research on the planning of deposit trajectory for welding prototyping based on TIG building-up technology[D].Nanchang: Nanchang University,2007(in Chinese).
胡瑢华.基于TIG堆焊技术的熔焊成型轨迹规划研究[D].南昌:南昌大学,2007.
33 Du N C. Study on metal rapid prototyping based on arc welding robot[D].Tianjin: Tianjin University,2009(in Chinese).
杜乃成.弧焊机器人金属快速成形研究[D].天津:天津大学,2009.
34 Dickens P M, Pridham M S, Cobb R C, et al. Rapid prototyping using 3-D welding[C]∥Proceedings of the 3rd Symposium Solid Freedom Fabrication. Austin, Texas,1992:280.
35 Kwak Y M, Doumanidis C. Geometry regulation of material deposition in near net shape manufacturing by thermally scanned welding[J].Journal of Manufacturing Processes,2002,4(1):28.
36 Ouyang J H, Wang H, Kovacevic R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: Process control and microstructure[J].Materials & Manufacturing Processes,2002,17(1):103.
37 Kazanas P, Deherkar P, Almeida P, et al. Fabrication of geometrical features using wire and arc additive manufacture[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2012,226(6):1042.
38 Zhang H O, Xong X H, Wang G L, et al. Direct manufacturing technology of metal parts by hybrid plasma deposition shaping and milling finishing[J]. China Mechanical Engineering,2005,16(20):1863(in Chinese).
张海鸥,熊新红,王桂兰,等.等离子熔积成形与铣削光整复合直接制造金属零件技术[J].中国机械工程,2005,16(20):1863.
39 Song Y A, Park S, Chae S W. 3D welding and milling: Part Ⅱ—Optimization of the 3D welding process using an experimental design approach[J].International Journal of Machine Tools & Manufacture,2005,45(9):1063.
40 Baufeld B, Biest O, Gault R. Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition[J].International Journal of Materials Research,2009,100(11):1536.
41 Baufeld B, Biest O. Mechanical properties of Ti-6Al-4V specimens produced by shaped metal deposition[J].Science and Technology of Advanced Materials,2009,10(1):015008.
42 Baufeld B, Biest O, Gault R, et al. Manufacturing Ti-6Al-4V components by shaped metal deposition:Microstructure and mechanical properties[C]∥IOP conference Series: Materials Science and Engineering. IOP Publishing,2011.
43 Baufeld B, Brandl E, Biest O. Wire based additive layer manufactu-ring: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition[J].Journal of Materials Processing Technology,2011,211(6):1146.
44 Brandl E, Baufeld B, Leyens C, et al. Additive manufactured Ti-6Al-4V using welding wire: Comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications[J].Physics Procedia,2010,5(Part B):595.
45 Baufeld B, Biest O, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: Microstructure and mechanical properties[J].Materials & Design,2010,31(1):S106.
46 Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J].Metallurgical and Materials Transactions A,2013,44(2):968.
47 Lin J J, Lv Y H, Liu Y X, et al. Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing[J].Materials & Design,2016,102:30.
48 Liu N. Research on Ti-6Al-4V shaped metal deposition by TIG wel-ding with wire[D]. Harbin: Harbin Institute of Technology,2013(in Chinese).
刘宁.TC4钛合金TIG填丝堆焊成型技术研究[D].哈尔滨:哈尔滨工业大学,2013.
49 Martina F, Williams S W, Colegrove P, et al. Improved microstructure and increased mechanical properties of additive manufacture produced Ti-6Al-4V by interpass cold rolling[C]∥International Solid Freeform Fabrication Symposium.2013.
50 Martina F, Roy M, Colegrove P, et al. Residual stress reduction in high pressure interpass rolled wire+arc additive manufacturing Ti-6Al-4V components[C]∥International Solid Freeform Fabrication Symposium.2014.
51 Martina F. Investigation of methods to manipulate geometry, microstructure and mechanical properties in titanium large scalewire+arc additive manufacturing[D].Bedfordshire:Cranfield University,2014.
52 Xie Y, Gao M, Wang F, et al. Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V[J].Materials Science & Engineering A,2018,709:265.
53 Zhang J, Wang X, Paddea S, et al. Fatigue crack propagation beha-viour in wire+arc additive manufactured Ti-6Al-4V: Effects of microstructure and residual stress[J].Materials & Design,2016,90:551.
54 Bermingham M J, Kent D, Zhan H, et al. Controlling the microstructure and properties of wire arc additive manufactured Ti-6Al-4V with trace boron additions[J].Acta Materialia,2015,91:289.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed