Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1891-1902    https://doi.org/10.11896/j.issn.1005-023X.2018.11.017
  材料综述 |
含1,3,4-噻二唑环聚合物的合成及应用研究进展
李超1,马成章1,黄绍军2,闵春刚2,黄秋玲2,孙晓东2
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 昆明理工大学分析测试研究中心,昆明 650093
Advances in the Synthesis and Application of 1,3,4-Thiadiazole Ring-containing Polymers
LI Chao1, MA Chengzhang1, HUANG Shaojun2, MIN Chungang2, HUANG Qiuling2, SUN Xiaodong2
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 1453KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含1,3,4-噻二唑环聚合物作为一类新型功能性的芳香杂环聚合物,由于其独特的储能性能、电催化活性、富电子特性而备受关注。近20年来对于含1,3,4-噻二唑环聚合物的研究从未间断,主要集中在材料的电化学合成和结构表征及其在可充电锂电池正极材料、生物化学传感器、临床诊断和药理学等领域的应用。
    电化学合成的方法有利于制备厚度可控的自支撑膜和对电极进行修饰,缺陷是造成电解液污染、成本高以及不适合规模化生产。研究者们尝试使用化学氧化聚合的方法来合成含1,3,4-噻二唑环聚合物,但除了2,5-二巯基-1,3,4-噻二唑聚合物可通过此方法成功合成外,主要得到的是一些配合物或配位聚合物。采用绿色的规模化的制备工艺来合成含1,3,4-噻二唑环聚合物是大势所趋。含1,3,4-噻二唑环聚合物的结构表征由于受到溶解性的限制,表征手段主要为X射线光电子能谱和红外(拉曼)光谱。2,5-二巯基-1,3,4-噻二唑聚合物由于具有高能量密度和高比容量而在二次锂电池正极材料的应用方面受到研究者们的青睐,但存在着充放电缓慢和电容量衰减快等缺陷。基于含1,3,4-噻二唑环聚合物修饰电极构建的传感器可高灵敏且高选择性地探测许多生物相关分子,但电极的稳定性有待改善。
    在所有的1,3,4-噻二唑环聚合物中,聚2-氨基-1,3,4-噻二唑(PAT)、聚5-氨基-1,3,4-噻二唑-2-硫醇或5-氨基-2-巯基-1,3,4-噻二唑(PAMT)以及聚2,5-二巯基-1,3,4-噻二唑(PBT)已通过电化学方法合成;PBT 也在绿色的合成条件下采用化学氧化合成法合成得到,为其他1,3,4-噻二唑环聚合物的合成提供了借鉴,本课题组也通过化学氧化聚合法制备了PAT、PAMT和聚2-巯基-1,3,4-噻二唑(PTT)三类聚合物。目前,PBT作为二次锂电池正极材料研究得最多,其理论比容量高达362 mAh/g,研究者们将PBT与聚吡咯、聚苯胺或水溶性磺化石墨烯等导电聚合物制成复合电极,进一步提高比容量和电极的稳定性并且加速充放电过程。基于含1,3,4-噻二唑环聚合物修饰电极构建的传感器在探测天然产物有效成分的含量、人和哺乳动物血液和体液或药品注射液中药物或代谢产物的含量、中药材或食品中的农药残留量以及水溶液中的重金属离子含量等方面取得了丰硕的成果;而将1,3,4-噻二唑环聚合物与全氟磺酸粘合剂、多壁碳纳米管复合可减少聚合物流失,从而起到增强电极稳定性和延长使用寿命的作用。
    本文归纳了1,3,4-噻二唑环聚合物研究进展,分别对1,3,4-噻二唑环聚合物的合成、结构表征途径及其应用等进行了介绍,分析了1,3,4-噻二唑环聚合物的研究中面临的问题并展望了其应用前景,以期为1,3,4-噻二唑环聚合物的制备工艺和功能拓展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李超
马成章
黄绍军
闵春刚
黄秋玲
孙晓东
关键词:  含1,3,4-噻二唑环聚合物  合成  二次锂电池正极材料  传感器    
Abstract: As a new type of functional aromatic heterocyclic polymers, 1,3,4-thiadiazole ring-containing polymers have attracted a great deal of attention in recent years due to their unique energy storage, electrocatalytic activity and electron-rich properties. In the past two decades, the uninterrupted research over 1,3,4-thiadiazole ring-containing polymers has been mainly focused on the electrochemical synthesis and structural characterization of these polymers as well as their applications in cathode materials for rechar-geable lithium batteries, biochemical sensors, clinical diagnosis and pharmacology and other related fields.
    Electrochemical synthesis method is favorable to the preparation of self-supporting membrane with controllable thickness and easy modification for electrodes, but nevertheless presents many defects such as electrolyte contamination, high cost and unsuitability for large-scale production. Some researchers have made attempts to synthesize 1,3,4-thiadiazole ring-containing polymers via chemical oxidative polymerization, though merely obtained some complexes or coordination polymers except 2,5-dimercapto-1,3,4-thia-diazole polymers, yet the environmental friendly and large-scale synthesis methodology represent the general trend. There are scanty means available for the structural characterization of 1,3,4-thiadiazole ring-containing polymers because of the solubility limitation, and the main characterization methods are X-ray photoelectron spectroscopy and infrared or Raman spectroscopy. The features of high energy density and high specific capacity have recommended 2,5-dimercapto-1,3,4-thiadiazole polymers to global researchers in seeking for the secondary lithium battery cathode materials, but they also suffer some weaknesses such as slow charge-discharge rate and rapid decline in the capacitance. Besides, the sensors constructed based on 1,3,4-thiadiazole ring-containing polymer modified electrodes have displayed potential for highly sensitive and highly selective detection of a rich variety of bio-related molecules, but the stability of these electrodes needs improvement.
    Among all 1,3,4-thiadiazole ring-containing polymers, poly-2-amino-1,3,4-thiadiazole (PAT), poly-5-amino-1,3,4-thiadiazole-2-thiol or poly-5-amino-2-mercapto-1,3,4-thiadiazole (PAMT) and poly-2,5-dimercapto-1,3,4-thiadiazole (PBT) have been synthesized through electrochemical method, while PBT has also been synthesized via a chemical oxidative synthesis method under green conditions, offering a reference for the synthesis of other 1,3,4-thiadiazole ring-containing polymers. Furthermore, our group also has successfully synthesized PAT, PAMT and poly-2-mercapto-1,3,4-thiadiazole (PTT) through chemical oxidative polymerization. So far, with respect to cathode material for secondary lithium ion battery, the PBT with a theoretical specific capacity of up to 362 mAh/g has been the most studied. Researchers have combined PBT with conductive polymers such as polypyrrole, polyaniline or water-soluble sulfonated graphene to further enhance the specific capacity and the stability of the electrode and accelerate the charge-discharge process. Meanwhile impressive strides have been made in fabricating the biochemical sensors based on 1,3,4-thiadiazole ring-containing polymers modified electrodes for the purpose of detection and content measurement of active ingredients in natural pro-ducts, drugs or metabolites in blood and body fluids of human/mammals or in the drug injections, the pesticide residues in Chinese herbal medicine or food, and heavy metal ions in aqueous solutions. Combining 1,3,4-thiadiazole ring-containing polymer with perf-luorosulfonic acid binder and multi-walled carbon nanotubes would facilitate to reduce polymer loss, thus enhancing the stability of the electrode and prolonging the service life.
    This review mainly concerns the worldwide research over 1,3,4-thiadiazole ring-containing polymers. It introduces the synthesis, structure characterization and application of 1,3,4-thiadiazole ring-containing polymers, and discusses the problems confronting the 1,3,4-thiadiazole ring-containing polymers and their application prospects. It is expected to provide a reference for the preparation technology and function extension of this species of polymers.
Key words:  1,3,4-thiadiazole ring-containing polymers    synthesis    cathode materials for rechargeable lithium battery    sensors
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TB324  
基金资助: 国家自然科学基金(51363012;11764026);昆明理工大学分析测试基金(2018T20110164)
作者简介:  李超:男,1991年生,硕士研究生,主要从事材料化学的研究 马成章:共同第一作者,男,1988年生,硕士研究生,主要从事功能材料的研究 黄绍军:通信作者,男,副教授,主要从事材料化学和功能材料的研究 E-mail:huangshaojun1975@163.com
引用本文:    
李超, 马成章, 黄绍军, 闵春刚, 黄秋玲, 孙晓东. 含1,3,4-噻二唑环聚合物的合成及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1891-1902.
LI Chao, MA Chengzhang, HUANG Shaojun, MIN Chungang, HUANG Qiuling, SUN Xiaodong. Advances in the Synthesis and Application of 1,3,4-Thiadiazole Ring-containing Polymers. Materials Reports, 2018, 32(11): 1891-1902.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.017  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1891
1 Feng Z Z, Nuli Y N, Yang J. Conductive sulfur-containing material/polyaniline composite for cathode material of rechargeable magne-sium batteries[J].Acta Physico-Chimica Sinica,2007,23(3):327(in Chinese).
冯真真,努丽燕娜,杨军.导电含硫材料/聚苯胺复合物作为镁二次电池的正极材料[J].物理化学学报,2007,23(3):327.
2 Pope J M, Sato T, Shoji E, et al. Organosulfur/conducting polymer composite cathodes Ⅱ. Spectroscopic determination of the protonation and oxidation states of 2,5-dimercapto-1,3,4-thiadiazole[J].Journal of the Electrochemical Society,2002,149(7):A939.
3 Gao J, Lowe M A, Conte S, et al. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with drama-tically improved performance[J].Chemistry-A European Journal,2012,18(27):8521.
4 Yu L, Wang X H, Li J, et al. Soluble 2,5-dimercapto-1,3,4-thia-diazole/poly(o-toluidine) electroactive composite[J].Journal of the Electrochemical Society,1999,146(5):1712.
5 Kalimuthu P, John S A. Modification of electrodes with nanostructured functionalized thiadiazole polymer film and its application to the determination of ascorbic acid[J].Electrochimica Acta,2009,55(1):183.
6 He J B, Qi F, Wang Y, et al. Solid carbon paste-based amperometric sensor with electropolymerized film of 2-amino-5-mercapto-1,3,4-thiadiazole[J].Sensors and Actuators B-Chemical,2010,145(1):480.
7 Kalimuthu P, John S A. Selective electrochemical sensor for folic acid at physio-logical pH using ultrathin electropolymerized film of functionalized thiadiazole modified glassy carbon electrode[J].Biosensors & Bioelectronics,2009,24(12):3575.
8 Muti M, Gencdag K, Nacak F M, et al. Electrochemical polymerized 5-amino-2-mercapto-1,3,4-thiadiazole modified single use sensors for detection of quercetin[J].Colloids and Surfaces B-Biointerfaces,2013,106:181.
9 Aydogdu G, Gunendi G, Zeybek D K, et al. A novel electrochemical DNA biosensor based on poly-(5-amino-2-mercapto-1,3,4-thia-diazole) modified glassy carbon electrode for the determination of nitrofurantoin[J].Sensors and Actuators B—Chemical,2014,197(3):211.
10 Kalimuthu P, John S A. Simultaneous determination of epinephrine, uric acid and xanthine in the presence of ascorbic acid using an ultrathin polymer film of 5-amino-1,3,4-thiadiazole-2-thiol modified electrode[J].Analytica Chimica Acta,2009,647(1):97.
11 Kalimuthu P, John S A. Electropolymerized film of functionalized thiadiazole on glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid[J].Bioelectrochemistry,2009,77(1):13.
12 Kalimuthu P, John S A. Nanostructured electropolymerized film of 5-amino-2-mercapto-1,3,4-thiadiazole on glassy carbon electrode for the selective determination of L-cysteine[J].Electrochemistry Communications,2009,11(2):367.
13 Tan X, Li C, Feng Y, et al. Electrochemical determination of me-thyl parathion using poly-(2-amino-5-mercapto-1,3,4-thiadiazole) nano-film modified electrode[J].Nanoscience and Nanotechnology Letters,2013,5(7):818.
14 Varghese A, Chitravathi S, Munichandraiah N. Electrocatalytic oxidation and determination of morin at a poly(2,5-dimercapto-1,3,4-thiadiazole) modified carbon fiber paper electrode[J].Journal of the Electrochemical Society,2016,163(8):B471.
15 Zhao C, Liu H, Wang L. Simultaneous determination of Pb(Ⅱ) and Cd(Ⅱ) using an electrode modified with electropolymerized thia-diazole film[J].Analytical Methods,2012,4(11):3586.
16 Lü Q F, Huang M R, Li X G. Synthesis and heavy-metal-ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability[J].Chemistry—A European Journal,2007,13(21):6009.
17 Li X G, Lü Q F, Huang M R. Self-stabilized nanoparticles of intrinsically conducting copolymers from 5-sulfonic-2-anisidine[J].Small,2008,4(8):1201.
18 Suen M C, Yeh C W, Jou C H. catena-Poly[(μ-2-amino-1,3,4-thiadiazole-κ2N3N4) di-μ-chlorido-cadmium][J].Acta Crystallographica,2011,E67:m1082.
19 El-Shekeil A G, Al-Maydama H M, Al-Shuja’a O M. The synthesis, characterization, and DC electrical conductivity of poly[di(2,5-dimercapto-1,3,4-thiadiazole)-metal] complexes[J].Journal of Applied Polymer Science,2007,106(4):2427.
20 Sun J S, Zhang R F, Wang D Q. catena-Poly[[trimethyltin(IV)]-μ-[5-(2-thienyl- methyleneamino)-1,3,4-thiadiazole-2-thiolato-κ2N4S2]][J].Acta Crystallographica,2007,E63:m418.
21 Qin J H, Wang J G, Hu P Z. catena-Poly[[[bis[2,2′-(propane-1,3-diyl-dithio) bis(1,3,4-thiadiazole)-κN4]-copper(Ⅱ)]-bis[μ-2,2′-(propane-1,3-diyl-dithio)bis(1,3,4-thiadiazole)-κ2N4∶N4]]bis(perchlorate)][J].Acta Crystallographica,2009,E65:m349.
22 Qin J H, Wang J G, Hu P Z. Crystal structure of ethanolatopenta {2,2′-[1,2-propanedithio-bis(1,3,4-thiadiazole)]} dicopper(Ⅱ) tetrakisperchlorate,[Cu2(C2H5OH)(C7H8N4S4)5][ClO4]4[J].Zeitschrift für Kristallographie—New Crystal Structures,2010,225(2):339.
23 Tiwari M, Gupta S, Prakash R. One pot synthesis of coordination polymer 2,5-dimercapto-1,3,4-thiadiazole-gold and its application in voltammetric sensing of resorcinol[J].RSC Advances,2014,4(49):25675.
24 Shouji E, Oyama N. Examination of the cleavage and formation of the disulfide bond in poly[dithio-2,5-(1,3,4-thiadiazole) by redox reaction[J].Journal of Electroanalytical Chemistry,1996,410(2):229.
25 Jin L, Wang G, Li X, et al. Poly(2,5-dimercapto-1,3,4-thia-diazole)/sulfonated graphene composite as cathode material for rechargeable lithium batteries[J].Journal of Applied Electrochemistry,2011,41(4):377.
26 He X, Su Z, Xie Q, et al. Differential pulse anodic stripping voltammetric determination of Cd and Pb at a bismuth glassy carbon electrode modified with Nafion, poly(2,5-dimercapto-1,3,4-thiadiazole) and multiwalled carbon nanotubes[J].Microchimica Acta,2011,173(1-2):95.
27 黄绍军,马成章,李超,等.一种聚2-巯基-1,3,4-噻二唑纳米颗粒及其合成方法和用途:中国,201710067737.9[P].2017.
28 黄绍军,李超,马成章,等.聚2,5-二巯基-1,3,4-噻二唑纳米片的制备方法:中国,201611071101.3[P].2016.
29 黄绍军,马成章,杜萍,等.化学氧化聚合制备聚2-氨基-1,3,4-噻二唑纳米纤维的方法:中国,201610258933.X[P].2016.
30 Xu J, Hou J, Zhang S, et al. Electrochemical polymerization of fluoranthene and characterization of its polymers[J].Journal of Phy-sical Chemistry B,2006,110(6):2643.
31 Dias J R. Electronic and structural properties of biazulene, terazulene, and polyazulene isomers[J].Journal of Physical Organic Chemistry,2007,20(6):395.
32 Liu M L, Visco S J, De Jonghe L C. Novel solid redox polymerization electrodes—All-solid-state, thin-film, rechargeable lithium batteries[J].Journal of the Electrochemical Society,1991,138(7):1891.
33 Liu M L, Visco S J, De Jonghe L C. Novel solid redox polymerization electrodes—Electrochemical properties[J].Journal of the Electrochemical Society,1991,138(7):1896.
34 Kiya Y, Iwata A, Sarukawa T, et al. Poly[dithio-2,5-(1,3,4-thia-diazole)] (PDMcT)-poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode for high-energy lithium/lithium-ion rechargeable batteries[J].Journal of Power Sources,2007,173(1):522.
35 Dalmolin C, Biaggio S R, Rocha-Filho R C, et al. Reticulated vit-reous carbon/polypyrrole composites as electrodes for lithium batte-ries: Preparation, electrochemical characterization and charge-discharge performance[J].Synthetic Metals,2010,160(1-2):173.
36 Davoglio R A, Biaggio S R, Rocha-Filho R C, et al. Bilayered nanofilm of polypyrrole and poly(DMcT) for high-performance battery cathodes[J].Journal of Power Sources,2010,195(9):2924.
37 Oyama N, Tatsuma T, Sato T, et al. Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density[J].Nature,1995,373:598.
38 Tatsuma T, Matsui H, Shouji E, et al. Reversible electron transfer reaction between polyaniline and thiol/disulfide couples[J].Journal of Physical Chemistry,1996,100(33):14016.
39 Cosnier S, Holzinger M. Electrosynthesized polymers for biosensing[J].Chemical Society Reviews,2011,40(5):2146.
40 Chitravathi S, Swamy B E K, Mamatha G P, et al. Electrochemical behavior of poly (naphthol green B)-film modified carbon paste electrode and its application for the determination of dopamine and uric acid[J].Journal of Electroanalytical Chemistry,2012,667(1):66.
41 Shankar S S, Swamy B E K, Chandrashekar B N, et al. Sodium do-decyl benzene sulfate modified carbon paste electrode as an electrochemical sensor for the simultaneous analysis of dopamine, ascorbic acid and uric acid: A voltammetric study[J].Journal of Molecular Liquids,2012,177(8):32.
42 Mahanthesha K R, Swamy B E K, Chandra U, et al. Sodium dodecyl sulphate/polyglycine/phthalamide/carbon paste electrode based voltammetric sensors for detection of dopamine in the presence of ascorbic acid and uric acid[J].Chemical Sensors,2014,4(10):1.
43 Revin S B, John S A. Electropolymerization of 3-amino-5-mercapto-1,2,4-triazole on glassy carbon electrode and its electrocatalytic activity towards uric acid[J].Electrochimica Acta,2011,56(24):8934.
44 Xue Y, Sheng Z, Zhao H, et al. Electrochemical synthesis and cha-racterization of a novel thiazole-based copolymer and its application in biosensor[J].Electrochimica Acta,2012,59(4):256.
45 Zhang L, Wang L. Poly(2-amino-5-(4-pyridinyl)-1,3,4-thiadiazole) film modified electrode for the simultaneous determinations of dopamine, uric acid and nitrite[J].Journal of Solid State Electrochemistry,2013,17(3):691.
46 Li X G, Ma X L, Huang M R. Biosensors based on polyphenylene-diamine loaded with noble metal nanoparticles[J].Chinese Journal of Analytical Chemistry,2008,36(2):253(in Chinese).
李新贵,马小立,黄美荣.基于担载贵金属纳米粒子聚苯二胺的生物传感器[J].分析化学,2008,36(2):253.
47 Huang M R, Ding Y B, Li X G, et al. Synthesis of semiconducting polymer microparticles as solid ionophore with abundant complexing sites for long-life Pb(II) sensors[J].ACS Applied Materials & Interfaces,2014,6(24):22096.
48 Li X G, Ma X L, Huang M R. The application of poly(o-phenylenediamine) in sensors[J].Chemical Sensors,2008,28(1):15(in Chinese).
李新贵,马小立,黄美荣.聚邻苯二胺在传感器中的应用[J].化学传感器,2008,28(1):15.
49 Patil P S, Haram N S, Pal R R, et al. Synthesis, spectroscopy, and electrochemical investigation of new conjugated polymers containing thiophene and 1,3,4-thiadiazole in the main chain[J].Journal of Applied Polymer Science,2012,125(3):1882.
50 Chang K, Liu Z, Chen H, et al. Conjugated polymer dots for ultra-stable full-color fluorescence patterning[J].Small,2014,10(21):4270.
51 Dias N L, Caetano L, do Carmo D R, et al. Preparation of a silica gel modified with 2-amino-1,3,4-thiadiazole for adsorption of metal ions and electroanalytical application[J].Journal of the Brazilian Chemical Society,2006,17(3):473.
52 Tzvetkova P, Vassileva P, Nickolov R. Modified silica gel with 5-amino-1,3,4-thiadiazole-2-thiol for heavy metal ions removal[J].Journal of Porous Materials,2010,17(4):459.
53 Olkhovyk O, Jaroniec M. Ordered mesoporous silicas with 2,5-di-mercapto-1,3,4- thiadiazole ligand: High capacity adsorbents for mercury ions[J].Adsorption,2005,11:205.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 陈营, 周红梅, 陈德平, 慕东, 魏燕红, 叶远新. TAP-BPDA超支化聚酰亚胺的制备及性能[J]. 材料导报, 2019, 33(z1): 491-494.
[3] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[4] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[5] 翟培卓, 薛松柏, 陈涛, 孙子建, 陈卫中, 郭佩佩. 焊缝跟踪过程传感与信号处理技术的研究进展[J]. 材料导报, 2019, 33(7): 1079-1088.
[6] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[7] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[8] 周颖, 张道海, 秦舒浩. DOPO衍生物的合成与阻燃应用研究现状[J]. 材料导报, 2019, 33(5): 901-906.
[9] 沙胜男, 史才军, 向顺成, 焦登武. 聚羧酸减水剂的合成技术研究进展[J]. 材料导报, 2019, 33(3): 558-568.
[10] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[11] 秦博, 付晓刚, 马浩然, 张金权, 任丽霞, 龙斌. 铅铋合金气相氧含量控制初步实验研究[J]. 材料导报, 2019, 33(11): 1821-1824.
[12] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[13] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[14] 刘第强, 贾建刚, 高昌琦, 王建宏. 机械化学合成Ni2Al3/Al2O3去合金化制备Raney-Ni/Al2O3复合粉体[J]. 材料导报, 2018, 32(6): 957-960.
[15] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed