Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 901-906    https://doi.org/10.11896/cldb.201905023
  高分子与聚合物基复合材料 |
DOPO衍生物的合成与阻燃应用研究现状
周颖1, 张道海1,2, 秦舒浩1,2
1 国家复合改性聚合物材料工程技术研究中心,贵阳 550014;
2 贵州大学材料与冶金学院,贵阳 550025
Synthesis and Flame Retardant Applications of DOPO Derivatives: an Overview
ZHOU Ying1, ZHANG Daohai1,2, QIN Shuhao1,2
1 National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014;
2 College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025
下载:  全 文 ( PDF ) ( 1807KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于含卤阻燃剂的毒性和环境问题,磷系阻燃剂因环境友好而逐渐受到重视并引起了广泛关注。9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)衍生物作为一种磷系阻燃剂,自进入人们的视野以来,其合成方法和化学结构不断得到优化,近几年内取得了显著的成果。DOPO衍生物在气相和凝聚相阻燃,具有热稳定性高、耐水性好等特点,被广泛应用于阻燃高分子材料。根据DOPO衍生物所具有的官能团的不同,可将DOPO衍生物作为反应型或添加型阻燃剂应用到环氧树脂、聚酯和工程塑料中。许多具有P-C, P-N 和 P-O功能键的DOPO衍生物被合成。大多数具有P-C键的DOPO衍生物被应用到阻燃环氧树脂中,而具有P-N 和 P-O键的DOPO衍生物则大多被应用到阻燃聚氨酯泡沫、环氧树脂和工程塑料中。
通过化学反应,DOPO上的P-H键可被P-C键取代。这种反应包括亲核加成/取代和分子重排。P-杂原子键类DOPO衍生物主要分为两种类型,分别是以P-O键为代表的膦酸酯类DOPO衍生物和以P-N键为代表的氨基磷酸酯类DOPO衍生物。其实质是P-H键到P-O键和P-N键的转化。合成P-杂原子键类DOPO衍生物的两种主要路径是Atherton-Todd 反应和DOPO-Cl作为起始反应物。
在聚合物中加入磷系阻燃剂,能够赋予其较好的阻燃性能。然而,由于 P-C、P-O等含磷基团弱键的引入,使阻燃聚合物的力学性能受到负面影响。而DOPO衍生物磷含量较低,可减少含磷基团的负面影响。因此,添加DOPO类衍生物的阻燃高分子材料的力学性能相比添加其他磷系阻燃剂的阻燃高分子材料更有优势。
知悉反应原理是研究合成DOPO衍生物的关键。本文概述了DOPO衍生物的合成原理与方法,介绍了DOPO衍生物阻燃应用的研究现状,以期为新型DOPO衍生物阻燃剂的合成与应用提供参考。DOPO衍生物对聚合物力学性能的影响将是今后重点关注的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周颖
张道海
秦舒浩
关键词:  DOPO衍生物  合成  阻燃剂  阻燃    
Abstract: As halogen-containing flame retardants suffers from toxicity and environmental concerns, phosphorus-containing flame retardants have received increasing attention as alternatives for their environmental friendliness. Since the emergence of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO) as a kind of phosphorus-containing flame retardant, numerous efforts have been successively put in optimizing the synthetic approaches and chemical structure of the DOPO derivatives, and recently fruitful achievements have been made. DOPO-derivatives are considered as favorable alternatives for extensive applications in flame retardant polymer materials because of their high thermal stability, excellent water resistance, and versatile flame extinguishing behavior in the gas phase and condensed phase. DOPO derivatives can be used as reactive or additive flame retardants for epoxy resin, polyester and engineering plastics, according to their diverse functional groups. Various DOPO derivatives with P-C, P-N and P-O functional groups have been developed, among which a majority of P-C contained DOPO derivatives act as flame retardants in epoxy resins, while P-N and P-O contained DOPO derivatives are mostly applied in polyurethane foams, engineering plastics and epoxy resins.
The phosphinate derivatives of DOPO are prepared by replacing P-H bond with P-C bond through chemical processes, which mainly include two approaches, namely nucleophilic addition/substitution and molecular rearrangement. In addition, there are primarily two types of P-heteroatoms contained DOPO derivatives, representing by P-O contained phosphonate DOPO-derivatives and P-N contained phosphonamidate DOPO derivatives. In both cases, P-H bond activation of DOPO is crucial step to achieve P-N or P-O bond transformation. According to the literature, Atherton-Todd reaction and using DOP-Cl as starting material constitute the two major reaction pathways for synthesizing DOPO derivatives.
The addition of phosphorus flame retardants is able to endow polymer with satisfactory flame retardant performance. Nevertheless, the introduction of the phosphoric weak bonds of P-O and P-C may exert negative effects on the mechanics of flame retardant polymer. The negative effects of phosphorous groups will be weakened in DOPO derivatives with low loading amount of phosphorus. Therefore, the flame retardant macromole-cular materials with DOPO derivatives are superior in mechanical properties compared with other phosphorus flame retardants.
Understanding the principle of reaction is the key to developing novel DOPO based derivatives. This review offers a retrospection of the research efforts with respect to the synthesis principle and approaches of DOPO derivatives, and flame retardant applications, aiming at provide a refe-rence for the synthesis and application of novel flame retardant of DOPO derivatives. It has been proposed that the impact of DOPO derivatives on the mechanical properties of polymers will be the focus of research in the future.
Key words:  DOPO derivatives    synthesis    flame retardant additive    flame retardancy
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TQ 323.5  
基金资助: 贵州省科学技术基金项目(黔科合基础 2018/1087;2017/1091);贵州省高层次人才项目(黔科合人才 2016/5630;黔科合平台人才2017/5623);贵阳市白云区科技计划项目(白科合2017/66;2017/65)
作者简介:  周颖,2013年6月毕业于贵州大学,获得工程硕士学位。现工作于国家复合改性聚合物材料工程技术研究中心。目前主要研究领域为矿物加工和聚合物阻燃。张道海,国家复合改性聚合物材料工程技术研究中心副研究员。硕士毕业于大连理工大学化学化工学院,在贵州大学高分子材料科学与工程专业取得博士学位。zhangdaohai6235@163.com
引用本文:    
周颖, 张道海, 秦舒浩. DOPO衍生物的合成与阻燃应用研究现状[J]. 材料导报, 2019, 33(5): 901-906.
ZHOU Ying, ZHANG Daohai, QIN Shuhao. Synthesis and Flame Retardant Applications of DOPO Derivatives: an Overview. Materials Reports, 2019, 33(5): 901-906.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905023  或          http://www.mater-rep.com/CN/Y2019/V33/I5/901
1 Saito T. U.S. patent, US 3702878,1972.
2 Wang P, Cai Z S. Polymer Degradation and Stability,2017,137,138.
3 He X D, Zhang W C, Yang R J. Composites Part A,2017,98,124.
4 Guo W W, Yu B, Yuan Y, et al. Composites Part B,2017,123,154.
5 Zhang W C, Li X M, Yang R J. Polymer Degradation and Stability,2014,99,118.
6 Wang P, Yang F S, Li L, et al. Polymer Degradation and Stability,2016,129,156.
7 Xu W H, Wirasaputra A, Liu S M, et al. Polymer Degradation and Stability,2015,122,44.
8 Hu J H, Shan J Y, Wen D H, et al. Polymer Degradation and Stability,2014,109,218.
9 Xu M J, Xu G R, Leng Y, et al. Polymer Degradation and Stability,2016,123,105.
10 Wang J Y, Qian L J, Huang Z G, et al. Polymer Degradation and Stability,2016,130,173.
11 Wang Z G, Liang B. Fine Chemicals,2017(4),382(in Chinese).
王志国,梁兵.精细化工,2017(4),382.
12 Qian X D. Synthesis of a DOPO-based phosphorus- and silicon-containing flame retardant and its flame-retardant application in epoxy and polyurea resins. Ph.D. Thesis, University of Science and Technology of China,China,2014(in Chinese).
钱小东.含DOPO磷硅杂化阻燃剂的设计及其阻燃环氧与聚脲树脂性能的研究.博士学位论文,中国科学技术大学,2014.
13 Liu J H, Shi T J, Li M, et al. CIESC Jorunal,2015(2),820(in Chinese).
刘建华,史铁钧,李明,等.化工学报,2015(2),820.
14 Wang Y Z, He Y S, Yang Z Q, et al. Insulating Materials,2017(7),19(in Chinese).
王永珍,何岳山,杨中强,等.绝缘材料,2017(7),19.
15 Han M X, Xu M J, Li B. Chinese Journal of Synthetic Chemistry,2016(2),98(in Chinese).
韩明轩,许苗军,李斌.合成化学,2016(2),98.
16 Klinkowski C, Wagner S, Ciesielski M, et al. Polymer Degradation and Stability,2014,106,144.
17 Lee W L, Liu L C, Chen C M, et al. Polymers for Advanced Technologies,2014,25,36.
18 Neisius N M, Lutz M, Rentsch D, et al. Industrial and Engineering Chemistry Research,2014,53,2889.
19 Liu P, Liu M, Gao C, et al. Journal of Applied Polymer Science,2013,130,1301.
20 Chang Q F, Long L J, He W T, et al. Thermochimica Acta,2016,639,84.
21 Long L J, Chang Q F, He W T, et al. Polymer Degradation and Stability,2017,139,55.
22 Buczko A, Stelzig T, Bommer L, et al. Polymer Degradation and Stability,2014,107,158.
23 Gaan S, Liang S Y, Mispreuve H, et al. Polymer Degradation and Stabi-lity,2015,113,180.
24 Liu X, Salmeia K A, Rentsch D, et al. Journal of Analytical & Applied Pyrolysis,2017,124,219.
25 Li Z, Expósito D F, González A J, et al. European Polymer Journal,2017,93,458.
26 Chang Q F, Long L J, He W T, et al. Polymer Materials Science & Engineering,2017(5),30(in Chinese).
昌琪烽,龙丽娟,何文涛,等.高分子材料科学与工程,2017(5),30.
27 Fu Y C, Li Y, Fu Y Y, et al. China Plastics Industry,2016(8),111(in Chinese).
傅应才,李洋,付园园,等.塑料工业,2016(8),111.
28 Xu X Q. Engineering Plastics Application,2015(3),108(in Chinese).
徐晓强.工程塑料应用,2015(3),108.
29 Stawinski J, Kraszewski A. Accounts of Chemical Research,2002,35,952.
30 Xiong B Q, Shen R W, Goto M, et al. Chemistry,2012,18(52),16902.
31 Wang X L, Chen L, Wu J N, et al. ACS Sustainable Chemistry & Engineering,2017,5(4),3353.
32 Hoffmann T, Pospiech D, Höuβler L, et al. High Performance Polymers,2010,22(6),715.
33 Chopdekar V M, Mellozzi A R, Cornelson A T. U.S. patent application, US 20110054087 A1,2011.
34 Bai Z M, Song L, Hu Y, et al. Industrial and Engineering Chemistry Research,2013,52(36),12855.
35 Bai Z M, Jiang S D, Tang G, et al. Polymers for Advanced Technologies,2014,25(2),223.
36 Qian X D, Song L, Yuan B H, et al. Materials Chemistry and Physics,2014,143(3),1243.
37 Zhang C, Liu S M, Zhao J Q, et al. Polymer Bulletin,2013,70(4),1097.
38 Chen C H. U.S. patent application, US 20120329960 A1,2012.
39 Perez R M, Sandler J K W, Altstadt V, et al. Journal of Materials Science,2006,41(2),341.
40 Xiong Y Q, Zhang X Y, Liu J, et al. Journal of Applied Polymer Science,2012,125(2),1219.
41 Montchamp J L. Accounts of Chemical Research,2014,47(1),77.
42 Shree Meenakshi K, Pradeep Jaya Sudhan E, Ananda Kumar S, et al. Progress in Organic Coatings,2011,72(3),402.
43 Xie C, Zeng B, Gao H, et al. Polymer Engineering and Science,2014,54(5),1192.
44 Pierre-Yves R, Philippe V, Eric L, et al. Angewandte Chemie (International Edition),2003,42(21),2389.
45 Shum S P, King R E, Kuell C, et al. Phosphorus, Sulfur and Silicon and the Related Elements,2007,182(11),2611.
46 Kumar R, Gupta A K, Kaushik M P. Molecules,2007,12(7),1334.
47 Dittrich U, Just B, Doering M, et al. E.U. patent, EP 1506968 A1,2005.
48 Atherton F R, Openshaw H T, Todd A R. Journal of the Chemical Society,DOI:10.1039/JR9450000 660.
49 Wagner S, Rakotomalala M, Bykov Y, et al. Heteroatom Chemistry,2012,23(2),216.
50 Wagner S, Rakotomalala M, Chesneau F, et al. Phosphorus, Sulfur and Silicon and the Related Elements,2012,187(7),781.
51 Xalter R, Roth M, Döring M, et al. U.S. patent application, WO 2013072295 A1,2013.
52 Wang X, Hu Y, Song L, et al. Polymer,2010,51(11),2435.
53 Zhang Y, Yu B, Wang B, et al. Industrial & Engineering Chemistry Research,2017,56(5),1245.
54 Long L J, Yin J B, He W T, et al. Industrial & Engineering Chemistry Research,2016,55(40),10803.
55 Liu P, Liu M, Gao C, et al. Journal of Applied Polymer Science,2013,130(2),1301.
[1] 陈营, 周红梅, 陈德平, 慕东, 魏燕红, 叶远新. TAP-BPDA超支化聚酰亚胺的制备及性能[J]. 材料导报, 2019, 33(z1): 491-494.
[2] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[3] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[4] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[5] 沙胜男, 史才军, 向顺成, 焦登武. 聚羧酸减水剂的合成技术研究进展[J]. 材料导报, 2019, 33(3): 558-568.
[6] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[7] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[8] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[9] 马砺, 刘志超, 肖旸, 康付如, 杨昆, 邓军. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.
[10] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[11] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[12] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[13] 刘第强, 贾建刚, 高昌琦, 王建宏. 机械化学合成Ni2Al3/Al2O3去合金化制备Raney-Ni/Al2O3复合粉体[J]. 材料导报, 2018, 32(6): 957-960.
[14] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[15] 何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed