Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 558-568    https://doi.org/10.11896/cldb.201903024
  高分子与聚合物基复合材料 |
聚羧酸减水剂的合成技术研究进展
沙胜男, 史才军, 向顺成, 焦登武
湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
The State-of-the-art Synthesis Techniques of Polycarboxylate Superplasticizer
SHA Shengnan, SHI Caijun, XIANG Shuncheng, JIAO Dengwu
Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1757KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于聚羧酸减水剂(PCE)具有掺量低、减水率高(>40%)等特点,可显著改善混凝土的工作性能、力学性能和耐久性能,它已成为高性能或超高性能混凝土配合比设计中必不可少的组分之一。PCE通常由含阴离子基团(如羧基、磺酸基和磷酸酯基等)侧基的主链和中性接枝电荷的侧链组成,阴离子主要作为吸附基团吸附在带正电的水泥颗粒表面提供静电斥力,侧链提供空间排斥力,二者协同作用打破了水泥颗粒间的絮凝状态,改善了水泥浆体的分散性。各种各样(如侧链、接枝密度、锚定官能团和主链长度等)的改性PCE表现出不同的作用效果,可用于性能要求不同的混凝土。随着混凝土原材料的品质不断降低及性能要求不断提高,PCE对水泥类型、水灰比、操作温度、混合时间等混凝土配合比参数和生产条件更加敏感。由羧基和聚环氧乙烷(PEO)侧链组成的PCE与胶凝材料的不适应性越来越突出,超高性能混凝土对PCE的性能要求越来越高,一系列具有减缩、降粘、高保坍等性能的PCE应运而生。
PCE主要分为两类:一类是由α-甲氧基聚(乙二醇)甲基丙烯酸酯(MPEG-MA)通过水溶液自由基共聚或酯化/酯交换反应合成的聚酯型PCE;另一类是将α-烯丙基-α-甲氧基或β-羟基聚乙二醇醚和马来酸酐作为关键单体通过本体或水溶液自由基共聚,或是异戊二烯氧化聚乙二醇、丙烯酸和α-甲基丙烯酰-α-甲氧基或α-羟基聚乙二醇醚共聚合成聚醚型PCE。PCE中的不同官能团具有不同作用:羧酸基起减水和缓凝作用,磺酸基起分散作用,-OH羟基起缓凝和浸透润湿作用,而聚乙烷氧基类基团起保持流动性作用。酯类PCE的减水率及抑制水泥水化能力略低于醚类PCE。自由基聚合工艺简单、合成条件温和,但其因反应不可逆导致聚合度降低,合成产物难以控制;而活性自由基聚合(RAFT)可制备分子量可控、分子量分布窄的嵌段PCE。本文从原材料、合成条件、合成方法和后处理等方面综述了PCE合成制备技术的研究进展,并分析讨论了这些因素对PCE性能的影响,最后对PCE的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沙胜男
史才军
向顺成
焦登武
关键词:  聚羧酸系减水剂  合成方法  原材料  合成条件    
Abstract: Polycarboxylate superplasticizers (PCE) has become an indispensable component of high-performance or ultra-high performance concrete, owing to its low dosage, high water reducing rate (>40%), significant positive effects on the workability, mechanical and durability properties of concrete. PCE. is usually composed of a backbone containing anionic groups (like carboxyl group, sulfonic acid group and phosphate group) and grafted side chains with neutral charge. The anionic groups are adsorbed on the surface of cement particles, providing the electrosta-tic repulsion forces, while the PEO-grafted side chains extend from the cement particle surface into the pore solution to create steric hindrance forces. The synergistic effects of the two forces break down the flocculated clusters and improve the dispersion of cement paste. Diverse modified PCE with different side chains, grafting density, anchoring functional group and length of backbone show various effects and can be employed by concrete with different demand in performance. However, with the continuous raise in requirements of concrete performance and the decrease in quality of raw materials, the performance of PCE may be more sensitive to the mixture proportion parameters (cement type, w/c, etc.) and production conditions such as operating temperature and mixing time. The incompatibility between PCE with carboxyl and polyethylene oxide (PEO) side chains and cementitious materials is increasingly serious. Besides, with the increasing requirements of ultra-high performance concrete, a series of PCE with performances of shrinkage reduction, low viscosity and high slump retention have emerged as the times require.
PCE can be primarily classified into two categories. One is polyester-type PCE, which made from α-methoxy poly (ethylene glycol) methacrylate ester (MPEG-MA) by aqueous free radical copolymerization or esterification/transesterification reaction. The other is polyether-type PCE, which is synthesize by free radical copolymerization in bulk or in aqueous solution with α-allyl-α-methoxy or α-hydroxy poly (ethylene glycol) (APEG) ether and maleic anhydride as key monomers, or copolymerization via isoprenyl oxy poly (ethylene glycol, acrylic acid, and α-methallyl-α-methoxy or α-hydroxy poly (ethylene glycol) ether. Polycarboxylate superplasticizer (PCE) features low dosage and high water reducing rate. Different functional groups of PCE exhibit different effects, for example, carboxylic groups show retarding effect and water reducibility, sulfonic groups exert dispersing effect, and hydroxyl groups retarding and soaking wetting effects, and polyethoxy groups present flowability retention capability. The water reducing rate and ability of delayed hydration inhibition of ester-PCE are slightly lower than that of ether-PCE. The method of free radical polymerization possesses easy process and mild synthesis conditions, nevertheless, it is difficult to control the synthetic products due to the irreversible reaction.While reversible addition-fragmentation chain transfer (RAFT) polymerization can prepare the block PCE with controlled molecular weight and narrow molecular weight distribution. In this article, the development of synthesis techniques of PCE is comprehensively reviewed from the aspects of raw materials, synthesis conditions, synthesis methods and post-processing. The impacts of these factors on the performance of PCE are discussed in detail. Finally, the development trend of PCE is also proposed.
Key words:  polycarboxylate superplasticizer    synthetic method    raw materials    synthesis conditions
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TU528.042  
基金资助: 国家重点研发计划(2017YFB0310100)
作者简介:  沙胜男,2017年6月毕业于河南理工大学,获得理学学士学位。现为湖南大学土木工程学院博士研究生,在史才军教授的指导下进行研究。目前主要研究领域为聚羧酸的制备及其应用。史才军,国家第二批《千人计划》特聘专家、湖南省特聘专家、亚洲混凝土联合会副主席、湖南大学985工程创新平台首席科学家、特聘教授、中国建筑材料科学研究总院特聘教授、博士生导师,Taylor and Francis学术期刊Journal of Sustainable Cement-based Materials创刊主编, Journal of Ceramics in Modern Technologies共同主编、中国硅酸盐学会会刊《硅酸盐学报》副主编,Elsevier著名学术期刊Cement and Concrete Research和Cement and Concrete Composites、Construction and Building Materials、Taylor & Francis学术期刊Journal of Structural Integrity and Maintenance、西班牙Materiales de Construccion、《材料导报》、《建筑材料学报》、《重庆交通大学学报》及《中国水泥》等期刊编委。cshi@hnu.edu.cn
引用本文:    
沙胜男, 史才军, 向顺成, 焦登武. 聚羧酸减水剂的合成技术研究进展[J]. 材料导报, 2019, 33(3): 558-568.
SHA Shengnan, SHI Caijun, XIANG Shuncheng, JIAO Dengwu. The State-of-the-art Synthesis Techniques of Polycarboxylate Superplasticizer. Materials Reports, 2019, 33(3): 558-568.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903024  或          http://www.mater-rep.com/CN/Y2019/V33/I3/558
1 Jiao D, Shi C, Yuan Q, et al. Cement and Concrete Composites,2017,83,146.
2 Shi C J, He F Q, Liu Hui, et al. Ready-Mixed Concrete,2010(2),20(in Chinese).
史才军,何富强,刘慧,等.商品混凝土,2010(2),20.
3 Li Y, Zhang Y, Zheng J, et al. Journal of the European Ceramic Society,2014,34(1),137.
4 Lei L, Plank J. Cement and Concrete Research,2012,42(1),118.
5 Wang N, She Q, Xu H, et al. Journal of Applied Polymer Science,2010,115(3),1336.
6 Yang J, Zheng J, Zhang J, et al. RSC Advances,2015,5(41),32853.
7 Whitby C P, Scales P J, Grieser F, et al. Journal of Colloid and Interface Science,2003,262(1),274.
8 Yao D D, Jin R H. Polymer Chemistry,2015,6(12),2255.
9 Xue Z, He D, Xie X. Journal of Materials Chemistry A,2015,3(38),19218.
10 Shen Y. Journal of Materials Chemistry A,2015,3(25),13114.
11 Plank J, Sakai E, Miao C W, et al. Cement and Concrete Research,2015,78,81.
12 Li C Z, Zhang F C, Wei G X, et al. In:The 14th International Confe-rence of Cement Chemistry. Beijing,2015.
13 Guo W, Sun N, Qin J, et al.Journal of Applied Polymer Science,2012,125(1),283.
14 Liu X, Wang Z M, Zhao M, et al. In:The 14th International Conference of Cement Chemistry. Beijing,2015.
15 Kumar A, Lahiri S S, Singh H. International Journal of Pharmaceutics,2006,323(1-2),117.
16 Lange A, Plank J. Cement and Concrete Research,2012,42(2),484.
17 Lu S, Liu G, Ma Y, et al. Journal of Applied Polymer Science,2010,117,273.
18 Rinaldi D, Hamaide T, Graillat C, et al.Journal of Polymer Science Part A Polymer Chemistry,2010,47(12),3045.
19 Kong X, Shi Z, Lu Z. Construction and Building Materials,2014,68,434.
20 Plank J, Pöllmann K, Zouaoui N, et al. Cement and Concrete Research,2008,38(10),1210.
21 Wang G, Bai Y, Ma X, et al. Journal of Molecular Liquids,2017,225,333.
22 Zhang Y, Kong X. Cement and Concrete Research,2015,69,1.
23 Fan W, Stoffelbach F, Rieger J, et al. Cement and Concrete Research,2012,42(1),166.
24 Büyükyaci A, Tuzcu G, Aras L. Cement and Concrete Research,2009,39(7),629.
25 Tang L S, Zhang G Z, Liu X L, et al. Concrete,2010(2),74(in Chinese).
唐林生,张国政,李小丽,等.混凝土,2010(2),74.
26 Ma X X, Qian J S, Guo X Q, et al. Materials Review B:Research Papers,2010,24(10),55(in Chinese).
麻秀星,钱觉时,郭鑫祺,等.材料导报:研究篇,2010,24(10),55.
27 Miao C, Qiao M, Ran Q, et al. U.S. patent, US 9175122 B2,2015.
28 Yu B, Zeng Z, Ren Q, et al. Journal of Molecular Structure,2016,1120,171.
29 Sachsenhauser J P A B. Journal of Advanced Concrete Technology,2006,4,233.
30 He Y, Zhang X, Hooton R D. Construction and Building Materials,2017,132,112.
31 Kong F, Pan L, Wang C, et al. Construction and Building Materials,2016,105,545.
32 Xiang S C, Shi C J, Wu L M, et al. Journal of the Chinese Ceramic Society,2015(5),570(in Chinese).
向顺成,史才军,吴林妹,等.硅酸盐学报,2015(5),570.
33 Li C, Feng N, Li Y, et al. Cement and Concrete Research,2005,35(5),867.
34 Zhang X M, Huo L L, Fu Y, et al. Concrete,2010(12),61(in Chinese).
张新民,霍利利,傅雁,等.混凝土,2010(12),61.
35 Liu Jiaping,Ran Qianping,Miao Changwen, et al.Journal of Macromole-cular Science,2011,50(1),59.
36 Winnefeld F, Becker S, Pakusch J, et al. Cement and Concrete Compo-sites,2007,29(4),251.
37 Schröfl C, Gruber M, Plank J. Cement and Concrete Research,2012,42(11),1401.
38 Plank J, Schroefl C, Gruber M, et al. Journal of Advanced Concrete Technology,2009,7(1),5.
39 Tkaczewska E. Construction and Building Materials,2014,70,388.
40 Ma S, Zhao P, Guo Y, et al. Fuel,2013,111,648.
41 Lv S H, Li F , Wang F, et al. Journal of Building Materials,2008,11(5),515(in Chinese).
吕生华,李芳,王飞,等.建筑材料学报,2008,11(5),515.
42 Dalas F, Pourchet S, Nonat A, et al. Cement and Concrete Research,2015,71,115.
43 Wang W P,Zhu G J , Shen Q, et al. New Building Materials,2010,37(8),24(in Chinese).
王文平,朱国军,沈强,等.新型建筑材料,2010,37(8),24.
44 Ilg M, Plank J. Cement and Concrete Research,2016,79,123.
45 Zhu J, Zhang G, Miao Z, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,412,101.
46 Zhang L R, Wang D M, Wang F. In: The 14th International Conference of Cement Chemistry. Beijing,2015.
47 Ma S, Zhao P, Guo Y, et al. Fuel,2013,111,648.
48 Zhang Y, Kong X. Cement and Concrete Research,2015,69,1.
49 Zhu J F, Zhang G H, Miao Z,et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,412,101.
50 Zhang Y, Kong X. Construction and Building Materials,2014,53,392.
51 Janowska-Renkas E. Procedia Engineering,2015,108,575.
52 Huang H, Qian C, Zhao F, et al. Construction and Building Materials,2016,110,293.
53 Ye Y S, Huang H L, Hsu K H, et al. Journal of Applied Polymer Science,2006,100,2490.
54 Danzinger W M, Saitoh K, Tomoyose T, et al. U.S. patent, US 20080139701,2008.
55 Liu X, Wang Z, Zheng Y, et al. Materials,2014,7(9),6169.
56 Zang L, Li Y Q , Li L J, et al. New Building Materials,2010,37(9),45(in Chinese).
张林,李彦青,李利军,等.新型建筑材料,2010,37(9),45.
57 Bian X B, Shen J. Fine Chemicals,2006(2),179(in Chinese).
卞荣兵,沈健.精细化工,2006(2),179.
58 Liu M, Lei J, Guo L, et al. Thermochimica Acta,2015,613,54.
59 Bai Y, Ma X, Wang W, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,526,40.
60 Sun Z P, Zhao L. Journal of Building Materials,2009,12(2),127(in Chinese).
孙振平,赵磊.建筑材料学报,2009,12(2),127.
61 Miao C, Qiao M, Ran Q, et al. U.S. patent, US 9175122 B2,2015.
62 Liu X, Wang Z, Zhu J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,448,119.
63 Plank J, Sachsenhauser B, de Reese J. Cement and Concrete Research,2010,40(5),699.
64 Zhang Y, Kong X, Lu Z, et al. Cement and Concrete Research,2015,67,184.
65 Lu Z, Kong X, Zhang Q, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,507,46.
66 Graeme Moad, et al. Polymer International,2000,49(9),993.
67 De Brouwer H, Schellekens M A J, Klumperman B, et al. Journal of Polymer Science Part A Polymer Chemistry,2015,38(19),3596.
68 Becer C R, Hahn S S, Fijten M M, et al. Journal of Polymer Science Part A Polymer Chemistry,2008,46(21),7138.
69 Lu Z, Kong X, Zhang C, et al. Construction and Building Materials,2017,155,1147.
70 Shu X, Ran Q, Liu J, et al. Construction and Building Materials,2016,116,289.
[1] 张大旺,王栋民. 地质聚合物混凝土研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1519-1527.
[2] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[3] 唐晓博, 孙振平, 刘毅. 三乙醇胺助磨剂对水泥与聚羧酸系减水剂适应性的影响及其机理[J]. 《材料导报》期刊社, 2018, 32(4): 641-645.
[4] 卞洁鹏,杨庆浩. 离子液体的合成与纯化方法研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1813-1819.
[5] 张永祥, 廖建国, 李艳群, 路善行, 段星泽. 纳米羟基磷灰石/壳聚糖复合生物材料研究*[J]. 《材料导报》期刊社, 2017, 31(17): 53-60.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed