Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1836-1841    https://doi.org/10.11896/cldb.18060017
  材料与可持续发展(二)——材料绿色制造与加工* |
含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究
马砺1,2, 刘志超1,2, 肖旸1,2, 康付如1,2, 杨昆1,2, 邓军1,2
1 西安科技大学安全科学与工程学院,西安 710054
2 陕西省煤火灾害防治重点实验室,西安 710054
Study on the Flame Retardancy and Thermal Decomposition Properties of RTV-2 Silicone Rubber Foam Containing Inorganic Flame Retardant
MA Li1,2, LIU Zhichao1,2, XIAO Yang1,2, KANG Furu1,2, YANG Kun1,2, DENG Jun1,2
1 College of Safety and Engineer, Xi’an University of Science and Technology, Xi’an 710054
2 Key Lab of Coal Fire Disaster Prevention in Shanxi Province, Xi’an 710054
下载:  全 文 ( PDF ) ( 1857KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为制备出阻燃性能优异的室温硫化硅胶泡沫(SRF),本工作探究了无机阻燃剂对SRF的阻燃效果。首先,通过正交实验L9(34)优选出极限氧指数(LOI)最大的SRF,再分别添加氢氧化镁(MH)、碳酸钙(CC)和氢氧化铝(ATH)制成SRF复合材料。然后利用极限氧指数仪、烟密度测试仪、同步热分析仪对SRF复合材料进行测试分析,并采用Coats-Redfern、Achar法计算其表观活化能。结果表明:优选出的SRF的LOI为29.5%,添加无机阻燃剂后其氧指数增大,其中添加30% (质量分数)ATH的SRF的LOI最大,为34.9%;添加无机阻燃剂后,SPF复合材料的烟密度降低,其中ATH抑烟性最好;MH和ATH均提升了SRF的热稳定性,当两者的添加量均为20%(质量分数)时,SPF复合材料的质量残余率分别提升16.5%、15.2%,而添加30% CC后其质量残余率降低4.7%,且热稳定性也降低;活化能越大,无机阻燃剂的阻燃性能越强,MH、ATH在低温阶段、高温阶段均具有明显阻燃特性,而CC主要在高温阶段的阻燃特性较为明显;研究结果表明,添加ATH的SRF复合材料的阻燃效果最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马砺
刘志超
肖旸
康付如
杨昆
邓军
关键词:  硅胶泡沫  无机阻燃剂  阻燃性能  热分解特性    
Abstract: For the sake of preparing room temperature vulcanized silicone foam (SRF) with excellent flame retardancy, the flame retardant effects of inorganic flame retardants on SRF was studied. First, the SRF with maximum limit oxygen index(LOI) was selected by orthogonal experiment L9(34), and then the SRF composites were prepared by adding magnesium hydro-xide (MH), calcium carbonate (CC), and aluminum hydroxide (ATH), respectively. Then, the limit oxygen index instrument, smoke density tester and synchronous thermal analyzer were employed to test and analyze, and the apparent activation energy was calculated by the Coats-Redfern and Achar methods. The results revealed that the LOI of the SRF was 29.5%, the oxygen index increased after adding the inorganic flame retardant. Among them, the SRF composites with 30wt% ATH showed highest LOI of 34.9%. The smoke density decreased after adding the inorganic flame retardants, the smoke density decreased, and ATH exhibited best smoke inhibition. Both MH and ATH could contributed to enhance the thermal stability of SRF. When the addition amount of MH and ATH addition were both 20wt%, the mass residual rate was increased by 16.5% and 15.2%, respectively. Whereas, after adding 30wt% CC, the mass residual rate decreased by 4.7%, accompanied by decrease of the thermal stability. The greater the activation energy brought bout stronger flame retardancy. MH and ATH presented obvious flame retardancy at both the low temperature stage and the high temperature stage, while CC worked more effectively at the high temperature stage. The results indicated that ATH was the best flame retardant for SRF.
Key words:  silicone rubber foam    inorganic flame retardants    flame retardancy    thermal decomposition performance
               出版日期:  2019-06-10      发布日期:  2019-05-21
ZTFLH:  TQ323.5  
基金资助: 国家自然科学基金(51774232)
通讯作者:  mal@xust.edu.cn        
作者简介:  马砺,教授,主要从事消防安全科学与技术等方面科研与教学工作,围绕煤矿火灾防治,阻燃材料研发等开展了一系列研究和应用推广。刘志超,硕士,主要从事消防安全科学技术方面的研究。
引用本文:    
马砺, 刘志超, 肖旸, 康付如, 杨昆, 邓军. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.
MA Li, LIU Zhichao, XIAO Yang, KANG Furu, YANG Kun, DENG Jun. Study on the Flame Retardancy and Thermal Decomposition Properties of RTV-2 Silicone Rubber Foam Containing Inorganic Flame Retardant. Materials Reports, 2019, 33(11): 1836-1841.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060017  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1836
1 Chen D Z, Liu Y, Huang C. Polymer Degradation and Stability,2012,97(3),308.
2 Labouriau A, Cox J D, Schoonover J R, et al. Polymer Degradation & Stability,2007,92(3),414.
3 文闽军,王瑞婷.中国专利,CN102516770A,2012.
4 Tan S. Research on preparrtion and properties of low density and flame retardant silicone rubber foam. Master’s Thesis, Qingdao University of Science and Technology, China,2011(in Chinese).
谭珊.低密度阻燃硅橡胶泡沫的制备与性能研究.硕士学位论文,青岛科技大学,2017.
5 Huang S. Preparation of environment-friendly flame retardant silicone rubber sponge material. Master’s Thesis, South China University of Techno-logy, China,2003(in Chinese).
黄珊.环保型阻燃硅橡胶海绵材料的制备.硕士学位论文,华南理工大学,2003.
6 Nicholson W R, Rapson L J, Shephard K L.U.S. Patent US6084002,2000.
7 Wu Y, Zhu Q, Wang X H, et al. Polymer Materials Science & Enginee-ring,2016,32(3),54(in Chinese).
吴勇,朱靖,汪小憨,等.高分子材料科学与工程,2016,32(3),54.
8 Pan D H, Liu M. Silicone Material,2004(3),10(in Chinese).
潘大海,刘梅.有机硅材料,2004(3),10.
9 Zhu C, Deng C, Cao J Y, et al. Polymer Degradation & Stability,2015,121,42.
10 Wang G C, Lu Z Y, Hu X P, et al. Materials Review,2007,21(2),47(in Chinese).
汪关才,卢忠远,胡小平,等.材料导报,2007,21(2),47.
11 Chen X, Li M, Zhuo J, et al. Journal of Thermal Analysis & Calorimetry,2016,123(1).439.
12 Yang Y X, Li Y C, Wang P, et al. Engineering Plastics Application,2016,44(2),124(in Chinese).
杨业昕,李迎春,王盼,等.工程塑料应用,2016,44(2),124.
13 Ai G J, Ma W S,Wang H Z. China Rubber Industry,2007,54(5),279(in Chinese).
艾国金,马文石,王惠祖.橡胶工业,2007,54(5),279.
14 Hu R Z, Shi Q Z. Thermal analysis kinetics, Science press, China,2001(in Chinese).
胡荣祖,史启祯.热分析动力学,科学出版社,2001.
15 Lin H, Han L, Dong L. Journal of Applied Polymer Science,2014,131(13),378.
[1] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[2] 肖俊华, 左迎峰, 吴义强, 刘文杰, 吴志平, 孟陶陶. 硅丙乳液对镁系无机胶黏剂性能和微结构的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 49-54.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed