Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21143-21150    https://doi.org/10.11896/cldb.20060111
  无机非金属及其复合材料 |
石墨烯量子点在分离膜材料中的应用研究进展
于桐1, 邵文尧2, 洪专1, 吴晨溥1,2, 沈路钫1,2, 谢全灵1
1 自然资源部第三海洋研究所,厦门 361005
2 厦门大学化学化工学院,厦门 361005
Application Progress of Graphene Quantum Dots in Membrane Separation Materials
YU Tong1, SHAO Wenyao2, HONG Zhuan1, WU Chenpu1,2, SHEN Lufang1,2, XIE Quanling1
1 Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
2 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
下载:  全 文 ( PDF ) ( 5116KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在传统分离膜中引入纳米材料,有望解决选择性与渗透性之间存在的Trade-off效应、膜污染、化学稳定性等关键共性技术难题。零维石墨烯量子点(GQDs)纳米材料具有尺寸小、比表面积大、亲水性强等突出优点,在分离膜材料领域具有潜在的应用前景。本文归纳了基于界面聚合、相转化、表面改性等常规制膜方法,将GQDs或改性GQDs引入活性层(表层)、中间层或支撑层(亚层)等膜基质中,实现调控与优化分离膜结构与性能的最新研究进展。探讨了GQDs与改性GQDs对界面聚合“反应-扩散”过程、铸膜液热力学与相转化动力学过程以及层状膜层间距的影响机制,并阐述了引入GQDs或改性GQDs赋予分离膜抑菌、自清洁、荧光检测等新功能的原因。最后,展望了基于GQDs开发新型膜材料所面临的机遇和挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于桐
邵文尧
洪专
吴晨溥
沈路钫
谢全灵
关键词:  石墨烯量子点  分离膜  纳米复合膜  混合基质膜  表面改性    
Abstract: The introductions of nanomaterials into traditional membrane materials are expected to overcome the key technical problems such as tradeoff effect between selectivity and permeability, membrane fouling and chemical stability. Zero-dimensional graphene quantum dots (GQDs) have outstanding advantages of ultra-small size, large specific surface area and strong hydrophilicity. In this paper, the latest research progress about introducing GQDs or modified GQDs into membrane matrix via conventional membrane preparation methods are summarized to manipulate and optimize structures and separation performance. The influence mechanisms of GQDs or modified GQDs on the “reaction-diffusion” of interfacial polymerization process, thermodynamics of casting solution and kinetics of phase inversion, as well as the interlayer spacing of laminated membranes are discussed. The reasons why GQDs or modified GQDs endow separation membranes with new functionalities such as antibacte-rial, self-cleaning and fluorescence detection are elaborated. Finally, the opportunities and challenges of developing novel GQDs-incorporated membranes are prospected.
Key words:  graphene quantum dots    membrane separation    thin-film nanocomposite membrane    mixed matrix membrane    surface modification
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  O631  
  TB324  
  TQ316.6  
基金资助: 福建省科技计划引导性项目(2019H0049);自然资源部第三海洋研究所基本科研业务费专项资金资助项目(2019012);厦门海洋研究开发院共建项目(K200103)
通讯作者:  qlxie@tio.org.cn   
作者简介:  于桐,2019年6月毕业于山东大学,获得理学学士学位。现为自然资源部第三海洋研究所硕士研究生,在谢全灵老师的指导下开展相关科学研究。目前研究方向主要为新型膜材料及其应用技术开发。
谢全灵,男,博士,正高级工程师,研究方向包括膜材料开发与膜分离过程研究,活性产物分离纯化技术研究,海洋生物资源综合利用与开发等。主持各类科研项目十余项;申请国家发明专利16项,获授权9项;在国内外重要期刊上发表论文近50篇,包括Chemical Engineering Journal, Journal of Membrane Science, Desalination, Separation and Purification Technology等;获得中国海洋工程科学技术奖二等奖1项、国家海洋局海洋创新成果二等奖1项。
引用本文:    
于桐, 邵文尧, 洪专, 吴晨溥, 沈路钫, 谢全灵. 石墨烯量子点在分离膜材料中的应用研究进展[J]. 材料导报, 2021, 35(21): 21143-21150.
YU Tong, SHAO Wenyao, HONG Zhuan, WU Chenpu, SHEN Lufang, XIE Quanling. Application Progress of Graphene Quantum Dots in Membrane Separation Materials. Materials Reports, 2021, 35(21): 21143-21150.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060111  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21143
1 Werber J R, Osuji C O, Elimelech M.Nature Reviews Materials, 2016, 1(5), 1.
2 Mohammad A W, Teow Y H, Ang W L, et al.Desalination, 2015, 356, 226.
3 Farahani M, Chung T S.Chemical Engineering Journal, 2018, 345, 174.
4 Li J, Kang R M, Tang X H, et al.Nanoscale, 2016, 8(14), 7638.
5 Xie Q L, Shao W Y, Ma H J, et al.Materials Reports, 2019, 33(17), 2958 (in Chinese).
谢全灵, 邵文尧, 马寒骏, 等.材料导报, 2019, 33(17), 2958.
6 Yang K, Huang L J, Wang Y X, et al.Nanomaterials, 2020, 10(3), 13.
7 Cheng M M, Huang L J, Wang Y X, et al.Journal of Materials Science, 2019, 54(1), 252.
8 Du Y C, Huang L J, Wang Y X, et al.Journal of Materials Science, 2020, 55(25), 11188.
9 Xu X Y, Ray R, Gu Y L, et al.Journal of the American Chemical Society, 2004, 126(40), 12736.
10 Li H T, Kang Z H, Liu Y, et al.Journal of Materials Chemistry, 2012, 22(46), 24230.
11 Baker S N , Baker G A.Angewandte Chemie-International Edition, 2010, 49(38), 6726.
12 Wang Y F , Hu A G.Journal of Materials Chemistry C, 2014, 2(34), 6921.
13 Zheng X T, Ananthanarayanan A, Luo K Q, et al.Small, 2015, 11(14), 1620.
14 Jiang K, Sun S, Zhang L, et al.Angewandte Chemie-International Edition, 2015, 54(18), 5360.
15 Shen J H, Zhu Y H, Yang X L, et al.Chemical Communications, 2012, 48(31), 3686.
16 Saidi W A.Journal of Physical Chemistry Letters, 2013, 4(23), 4160.
17 Li H T, He X D, Kang Z H, et al.Angewandte Chemie-International Edition, 2010, 49(26), 4430.
18 Liu M L, Chen B B, Li C M, et al.Green Chemistry, 2019, 21(3), 449.
19 Konstantatos G, Badioli M, Gaudreau L, et al.Nature Nanotechnology, 2012, 7(6), 363.
20 Mi Y F, Wang N, Qi Q, et al.Separation and Purification Technology, 2020, 248, 117079.
21 Zhou Z Y, Hu Y X, Boo C, et al.Environmental Science & Technology Letters, 2018, 5(5), 243.
22 Saeedi-Jurkuyeh A, Jafari A J, Kalantary R R, et al.Environmental Technology, DOI:10.1080/09593330.2020.1720307.
23 Huang L W, Arena J T, Meyering M T, et al.Desalination, 2016, 399, 96.
24 Bi R, Zhang Q, Zhang R N, et al.Journal of Membrane Science, 2018, 553, 17.
25 Zhang Q. Fabrication of high flux, loose thin-film nanocomposite membrane with zero dimensional nanomaterials. Master's Thesis, Tianjin University, China, 2017 (in Chinese).
张琦.基于零维纳米材料制备高通量疏松结构超薄纳米复合膜. 硕士毕业论文, 天津大学, 2017.
26 Bi R, Zhang R N, Shen J L, et al.Journal of Membrane Science, 2019, 572, 504.
27 Zhang C F, Wei K F, Zhang W H, et al.ACS Applied Materials & Interfaces, 2017, 9(12), 11082.
28 Shao D D, Yang W J, Xiao H F, et al.ACS Applied Materials & Interfaces, 2020, 12(1), 580.
29 Yang W J, Shao D D, Zhou Z Z, et al.Chemical Engineering Journal, 2020, 385, 11.
30 He Y R, Zhao D L , Chung T S.Journal of Membrane Science, 2018, 564, 483.
31 Sun H Z , Wu P Y.Journal of Membrane Science, 2018, 564, 394.
32 Wu X L, Zhou G L, Cui X L, et al.ACS Applied Materials & Interfaces, 2019, 11, 17804.
33 Li S X, Li C, Su B W, et al.Journal of Membrane Science, 2019, 588, 13.
34 Yuan Z J, Wu X L, Jiang Y J, et al.Journal of Membrane Science, 2018, 549, 1.
35 Li S X, Li C, Song X J, et al.ACS Applied Materials & Interfaces, 2019, 11(6), 6527.
36 Liang Y Z, Li C, Li S X, et al.Chemical Engineering Journal, 2020, 380, 16.
37 Li Y, Li S , Zhang K S.Journal of Membrane Science, 2017, 537, 42.
38 Song X J, Zhou Q Z, Zhang T, et al.Journal of Materials Chemistry A, 2016, 4(43), 16896.
39 Gai W X, Zhao D L , Chung T S.Water Research, 2019, 154, 54.
40 Fathizadeh M, Tien H N, Khivantsev K, et al.Desalination, 2019, 451, 125.
41 Li S Y, Gao B Y, Wang Y, et al.Desalination, 2019, 464, 94.
42 Yu L, Zhou W, Li Y M, et al.ACS Sustainable Chemistry & Engineering, 2019, 7(9), 8724.
43 Seyedpour S F, Rahimpour A, Shamsabadi A A, et al.Chemical Engineering Research & Design, 2018, 139, 321.
44 Xu S J, Li F, Su B W, et al.Desalination, 2019, 451, 219.
45 Gai W X, Zhao D L , Chung T S.Journal of Membrane Science, 2018, 551, 94.
46 Shirke Y M, Abou-Elanwar A M, Choi W K, et al.RSC Advances, 2019, 9(55), 32121.
47 Zhao G K, Hu R R, Li J, et al.Science China Materials, 2019, 62(8), 1177.
48 Koulivand H, Shahbazi A, Vatanpour V, et al.Separation and Purification Technology, 2020, 230, 115895.
49 Colburn A, Wanninayake N, Kim D Y, et al.Journal of Membrane Science, 2018, 556, 293.
50 Dai Y, Wang J, Tao P P, et al.Journal of Colloid and Interface Science, 2019, 553, 503.
51 Hou M J. Preparation of matrix membranes incorporated with low-dimensional nanomaterial for CO2 separation. Master's Thesis, Taiyuan University of Technology, China, 2018 (in Chinese).
侯蒙杰.掺杂低维纳米材料的混合基质膜的制备及CO2分离研究. 硕士毕业论文, 太原理工大学, 2018.
52 Miller D J, Dreyer D R, Bielawski C W, et al.Angewandte Chemie-International Edition, 2017, 56(17), 4662.
53 Zhao G K, Hu R R, He Y J, et al.Advanced Materials Interfaces, 2019, 6(5), 1801742.
54 Zeng Z P, Yu D S, He Z M, et al.Scientific Reports, 2016, 6, 20142.
55 Zhao D L, Das S , Chung T S.Environmental Science & Technology, 2017, 51(23), 14016.
56 Yi Z, Shao F F, Yu L Y, et al.Desalination, 2020, 479, 114341.
57 Zhang D D, Jiang W Z, Zhao Y P, et al.Applied Surface Science, 2019, 494, 635.
58 Lei S J, Zeng M X, Huang D L, et al.ACS Sustainable Chemistry & Engineering, 2019, 7(16), 13708.
59 Gu Q L, Ng T C A, Zain I, et al.Applied Surface Science, 2020, 502, 144128.
60 Li X, Liu C, Yin W Q, et al.Journal of Membrane Science, 2019, 584, 309.
61 Xia Y, Wang Z G, Chen L Y, et al.Desalination, 2020, 488, 114510.
62 Ying Y L, He P, Wei M J, et al.Advanced Materials Interfaces, 2017, 4(14), 11.
63 Wang W T, Eftekhari E, Zhu G S, et al.Chemical Communications, 2014, 50(86), 13089.
64 Zhou F L, Tien H N, Dong Q B, et al.Journal of Materials Chemistry A, 2020, 8(3), 1084.
65 Wang M R, Pan F S, Yang L X, et al.Journal of Membrane Science, 2018, 563, 903.
66 Gao F F, Du X, Hao X G, et al.Chemical Engineering Journal, 2017, 328, 293.
67 Zhang J Q, Pan X L, Xue Q Z, et al.Journal of Membrane Science, 2017, 532, 38.
68 Jafari A, Kebria M R S, Rahimpour A, et al.Chemical Engineering and Processing, 2018, 126, 222.
69 Zhu J Y. Preparation of coal-based graphene quantum dots modified electrospun carbon nanofiber fabrics for high performance gravity-driven oil/water separation. Master's Thesis, Xinjiang University, China, 2018 (in Chinese).
朱家瑶.石墨烯量子点改性静电纺丝炭纤维膜的制备及其在水油分离中的应用. 硕士毕业论文, 新疆大学, 2018.
70 Ruiz V, Perez-Marquez A, Maudes J, et al. Sensors and Actuators B-Chemical, 2018, 262, 902.
71 Roy T, Wanchoo S K , Pal K.Solid State Ionics, 2020, 349, 115296.
72 Jia W, Tang B B , Wu P Y.Electrochimica Acta, 2018, 260, 92.
73 Parthiban V, Panda S K , Sahu A K.Electrochimica Acta, 2018, 292, 855.
74 Yuan Y F, Hu B, Tong C Y, et al.International Journal of Hydrogen Energy, 2019, 44(39), 22181.
75 Lecaros R L G, Bismonte M E, Doma B T, et al.Carbon, 2020, 162, 318.
76 Jlassi K, Eid K, Sliem M H, et al.Environmental Sciences Europe, 2020, 32(1), 12.
[1] 孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
[2] 郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
[3] 尹艳丽, 于鹤龙, 王红美, 魏敏, 史佩京, 白志民, 张伟, 徐滨士. 表面改性海泡石纳米纤维作为润滑油添加剂的摩擦学行为[J]. 材料导报, 2021, 35(14): 14017-14024.
[4] 朱志强, 王庆平, 闵凡飞, 薛婷婷, 卢春阳, 刘玉新. SiCp/Al复合材料界面调控研究进展[J]. 材料导报, 2021, 35(13): 13139-13147.
[5] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[6] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[7] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[8] 时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
[9] 裴贺兵, 莫尊理, 郭瑞斌, 刘妮娟, 贾倩倩, 高琴琴. 石墨烯量子点:兼具高效和环保的新型超级电容器电极材料[J]. 材料导报, 2020, 34(21): 21093-21098.
[10] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[11] 牛润萍, 庚立志, 范莹莹. 分离膜在膜液体除湿中的应用进展[J]. 材料导报, 2020, 34(15): 15069-15074.
[12] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[13] 吕强, 杨春利, 陈红, 马欣宇, 陈喜, 张强, 杜晶. Ni-BaCe0.7Y0.3-xTaxO3-δ(x=0,0.05,0.1)金属陶瓷氢分离膜的氢渗透性能[J]. 材料导报, 2020, 34(12): 12045-12049.
[14] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[15] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed