Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14017-14024    https://doi.org/10.11896/cldb.20060224
  无机非金属及其复合材料 |
表面改性海泡石纳米纤维作为润滑油添加剂的摩擦学行为
尹艳丽1, 于鹤龙1,*, 王红美1, 魏敏2, 史佩京2, 白志民3, 张伟2, 徐滨士1
1 陆军装甲兵学院,装备再制造技术国防科技重点实验室,北京 100072
2 京津冀再制造产业技术研究院,河间 062450
3 中国地质大学材料科学与工程学院,北京 100083
Tribological Behaviors of Surface-modified Sepiolite Nanofibers as a Lubricant Additive
YIN Yanli1, YU Helong1,*, WANG Hongmei1, WeiMin2, SHI Peijing2, BAI Zhimin3, ZHANG Wei2, XU Binshi1
1 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
2 Jingjinji Institute of Remanufacturing Industry & Technology, Hejian 062450, China
3 School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
下载:  全 文 ( PDF ) ( 19176KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用机械化学湿法表面改性工艺对海泡石矿物粉体进行了表面有机包覆和细化处理,得到了在润滑油中具有良好分散稳定性的纳米尺度的海泡石短纤维。借助往复式滑动磨损试验机,以GCr15/45#钢为摩擦副,考察了表面改性海泡石作为500SN矿物基础油添加剂的摩擦学行为。利用扫描电子显微镜、能量色散谱仪、X射线光电子能谱仪和纳米压痕仪分析了磨损表面的形貌、成分及纳米力学性能,揭示了表面改性海泡石添加剂的减摩润滑机理。结果表明,表面改性海泡石在不同载荷与频率下均表现出良好的抗磨减摩性能,当载荷为100 N、频率为20 Hz时,摩擦因数和45#钢磨损体积的降幅分别达到69.5%和71.7%。润滑油中部分海泡石粉体直接参与了金属表面复杂的化学反应,形成了由金属氧化物、氧化物陶瓷和石墨等组成的复合摩擦表面膜,该表面膜的形成与海泡石层链状结构及海泡石在不同摩擦条件下解理释氧、晶体结构破坏、活性基团重组密切相关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹艳丽
于鹤龙
王红美
魏敏
史佩京
白志民
张伟
徐滨士
关键词:  海泡石  表面改性  抗磨减摩  添加剂    
Abstract: Sepiolite natural mineral powders were modified and refined by using the mechanochemistry wet modification process, and the nano-scale sepiolite short-fiber were obtained which could be dispersed stably in lubricating oil. Tribological behaviors of the surface modified sepiolite powders as 500SN mineral oil additives were studied with tribopairs of GCr15/45# steel by an oscillating wear tester. The morphology, chemical composition and nano-scale mechanical properties of the worn metal surface were analyzed by scanning electron microscopy (SEM), X-ray energy dispersive spectrometry (EDS), X-ray photoelectron spectroscopy (XPS) and instrumented nanoindentation tester.The anti-wear and friction reducing mechanism of the surface modified sepiolite as lubricating oil additives was discussed. Results show that the surface modified sepiolite exhibited excellent tribological properties as lubricating oil additives,which could significantly reduce the friction coefficient and wear volume. Compared with 500SN oil, the friction coefficient and wear volume of the 45# steel lubricated by sepiolite oil decreased 69.5% and 71.7% respectively, when the load was 100 N and the frequency was 20 Hz. Partial sepiolite fibers in oil directly participated in the complex tribochemical reactions on the metal surface, and a tribofilm consisting of metal oxide, oxide ceramic, graphite and organics was formed on the worn surface of the 45# steel. The formation of the film is closely related to (1) the layer structure of sepiolite mineral, (2) its cleavage fracture and release of oxygen under different friction conditions, and (3) the destruction of crystal structure and reorganization of the active groups.
Key words:  sepiolite    surface modified    anti-wear and friction reducing    additives
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TH117.3  
基金资助: 国家重点研发计划(2017YFB0310703);国家自然科学基金面上项目(52075544)
通讯作者:  * helong.yu@163.com   
作者简介:  尹艳丽,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员。2010年6月毕业于北京理工大学,获得理学硕士学位。同年加入陆军装甲兵学院装备再制造技术国防科技重点实验室工作至今,主要从事再制造工程、润滑油添加剂及润滑材料研究。
于鹤龙,陆军装甲兵学院装备再制造技术国防科技重点实验室副主任、副研究员。2016 年毕业于中国人民解放军装甲兵工程学院,获得工学博士学位。主要从事装备再制造、表面工程与军用新材料领域的研究工作。发表学术论文80 余篇,获授权国家发明专利20余项。
引用本文:    
尹艳丽, 于鹤龙, 王红美, 魏敏, 史佩京, 白志民, 张伟, 徐滨士. 表面改性海泡石纳米纤维作为润滑油添加剂的摩擦学行为[J]. 材料导报, 2021, 35(14): 14017-14024.
YIN Yanli, YU Helong, WANG Hongmei, WeiMin, SHI Peijing, BAI Zhimin, ZHANG Wei, XU Binshi. Tribological Behaviors of Surface-modified Sepiolite Nanofibers as a Lubricant Additive. Materials Reports, 2021, 35(14): 14017-14024.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060224  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14017
1 Du P F, Chen G X, Song S Y, et al. Materials Reports B:Research Papers, 2016, 30(12), 76 (in Chinese).
杜鹏飞, 陈国需, 宋世远, 等. 材料导报:研究篇, 2016, 30(12), 76.
2 Zhao X G, Ou Y J, Zhang Y, et al. Materials Reports A:Review Papers, 2019, 33(6), 1860 (in Chinese).
赵晓光, 欧阳静, 张毅, 等. 材料导报:综述篇, 2019, 33(6), 1860.
3 Zhang B S, Xu B S, Xu Y, et al. Applied Surface Science, 2013, 285, 759.
4 Wang L M, Xu B S, Xu Y, et al. Key Engineering Materials, 2013, 525, 329.
5 Yang H, Jin Y S, Kazuhiko Yamashita. Lubrication Engineering, 2006(7), 144(in Chinese)
杨鹤, 金元生,山下一彦. 润滑与密封, 2006(7), 144.
6 Cao Y, Zhou Y K, Zhang D B, et al. Lubrication Engineering, 2014, 39(9), 46 (in Chinese).
曹阳, 周元康, 张大斌, 等. 润滑与密封, 2014, 39(9), 46.
7 Yin Y L, Yu H L, Wang H M, et al. Tribology, 2020, 40(4), 510.
尹艳丽, 于鹤龙, 王红美, 等. 摩擦学报, 2020, 40(4), 510.
8 Jin Y S, Li S H, Zhang Z Y, et al. Tribology International, 2004, 37(7), 561.
9 Yu H L, Xu Y, Shi P J, et al. Wear, 2013, 297, 802.
10 Bai Z M, Yang N, Guo M, et al. Tribology International, 2016, 101, 115.
11 Rudenko P. Applied Surface Science, 2013, 276(7), 383.
12 Yu X, Xie Y, Deng W X, et al. Journal of Guangdong University of Petro-chemical Technology, 2012, 22(6), 7 (in Chinese).
于湘, 谢颖, 邓伟星, 等. 广东石油化工学院学报, 2012, 22(6), 7.
13 Cao Z F, Xia Y Q, Xi X. Friction, 2017, 5(2), 219.
14 Gao C P, Wang Y M, Pan Z D. Journal of the Chinese Ceramic Society, 2014, 42(4), 506 (in Chinese).
高传平, 王燕民, 潘志东. 硅酸盐学报, 2014, 42(4), 506.
15 Du P F, Chen G X, Song S Y, et al. Journal of the Chinese Ceramic Society, 2016, 44(5), 748 (in Chinese).
杜鹏飞, 陈国需, 宋世远, 等. 硅酸盐学报, 2016, 44(5), 748.
16 Nan F, Xu Y, Xu B S, et al. Applied Surface Science, 2014, 307, 8.
17 Nan F, Xu Y, Xu B S, et al. Tribology Letters, 2014, 56, 531.
18 Xu H F, Hu Z Q, Gong B K, et al. Non-Metallic Mines, 2011, 1(34), 18 (in Chinese).
徐化方, 胡振琪, 龚碧凯, 等. 非金属矿, 2011, 1(34), 18.
19 You H Y, Zhu Z W, Ma Y F, et al. Industrial Safety and Environmental Protection, 2019, 7(45), 86 (in Chinese).
由晗杨, 朱志文, 马艳飞, 等. 工业安全与环保, 2019, 7(45), 86.
20 Lu Y, Qiu D, Zhang K L. Journal of Ningbo University of Technology, 2016, 28(1), 17.
鲁旖,仇丹,章凯丽. 宁波工程学院学报, 2016, 28(1), 17.
21 Yin Y L, Yu H L, Wang H M, et al. Journal of the Chinese Ceramic Society, 2020, 48(2), 299 (in Chinese).
尹艳丽, 于鹤龙, 王红美, 等. 硅酸盐学报, 2020, 48(2), 299.
22 Huang H P, Zhu H J, Yue W,et al. Acta Petrolei Sinica, 2012, 28(1), 143 (in Chinese).
黄海鹏,朱和菊,岳文,等. 石油学报, 2012, 28(1), 143.
23 Zhang B S. Preparation of self-reconditioning materials based on metastable serpentine mineral and investigation on their tribology mechanisms. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2011 (in Chinese).
张保森. 基于亚稳态蛇纹石矿物的自修复材料制备及摩擦学机理研究. 博士学位论文, 上海交通大学, 2011.
24 Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, USA, 1979.
25 Yamashita T, Hayes P. Applied Surface Science, 2008, 254, 2441.
26 Allahdin O, Dehou S C, Wartel M, et al. Chemical Engineering Research and Design, 2013, 91, 2732.
27 Pelissier B, Fontaine H, Beaurain A, et al. Engineering, 2011, 88, 861.
28 Montesdeoca-santana A, Jiménez-rodríguez E, Marrero N, et al. Nuclear Instruments & Methods in Physics Research Section B-beam Interactions with Materials and Atoms, 2010, 268, 374.
29 Zhang B. Preparation of self-repairing greases based on nano attapulgite powders and investigation on their tribological characteristics.Ph.D. Thesis, Academy of Armored Forces Engineering, China, 2012 (in Chinese).
张博. 基于纳米凹凸棒石的在线修复型润滑脂制备与摩擦学机理研究. 博士学位论文, 装甲兵工程学院, 2012.
30 Yu H L, Xu Y, Wang H M, et al. Tribology, 2012, 32(5), 500 (in Chinese).
于鹤龙, 许一, 王红美, 等. 摩擦学学报, 2012, 32(5), 500.
31 Wang L M.The research on tribological properties and self-reconditioning mechanics of nano-attapulgite. Ph.D. Thesis, Harbin Engineering University, China, 2015 (in Chinese).
王利民. 纳米凹凸棒石的摩擦学性能及自修复机理研究. 博士学位论文, 哈尔滨工程大学, 2015.
32 Wu J W, Wang X, Zhou L H, et al. Tribology International,2017,65,93.
33 Xi X, Xia Y Q, Cao Z F. Journal of the Chinese Ceramic Society, 2017, 45(8), 1159 (in Chinese).
席翔, 夏延秋, 曹正锋. 硅酸盐学报, 2017, 45(8), 1159.
34 Su P, Xiong Y, Liu X, et al. Materials Reports B:Research Papers, 2018, 32(4),1258(in Chinese).
苏鹏, 熊云, 刘晓, 等. 材料导报:研究篇, 2018, 32(4), 1258.
35 Li G J, Bai Z M, Zhao P. Journal of the Chinese Ceramic Society, 2018, 46(2), 306 (in Chinese).
李桂金, 白志民, 赵平. 硅酸盐学报, 2018, 46(2), 306.
36 Li S, Ren L L, Bai Z M, et al. Journal of the Chinese Ceramic Society, 2019, 3(47), 419.
37 Nan F, Xu Y, Xu B S, et al. Tribology International, 2015, 81, 199.
38 Zhao F Y. Tribological properties of serpentine micro-nanoparticles and mechanism of tribofilm formation. Ph.D. Thesis, China University of Geo-sciences, China, 2014 (in Chinese).
赵福燕. 微纳米蛇纹石粉体的摩擦行为及其成膜机理研究.博士学位论文, 中国地质大学, 2014.
39 Zheng S Q, Huang X H, Qian D, et al. Journal of Hunan Institute of Science and Technology, 2008, 2(21), 60 (in Chinese).
郑淑琴, 黄小红, 钱东, 等. 湖南理工学院学报, 2008, 2(21), 60.
40 Zhang J F, Duan X. China Nonmetallic Minerals Industry, 2009, 77(4), 19.
张江凤,段星. 中国非金属矿工业导刊, 2009, 77(4), 19.
41 Zhang X X, Zhang Y F, Yang S K,et al. Non-Metallic Mines, 2018, 41(1), 49 (in Chinese).
张肖肖, 章圆方, 杨守坤, 等. 非金属矿, 2018, 41(1), 49.
42 Li J Y, Zhou C L, Ma S Y, et al. Non-Metallic Mines, 2008, 31(6), 13 (in Chinese).
李计元, 周彩楼, 马玉书, 等. 非金属矿, 2008, 31(6), 13.
[1] 朱志强, 王庆平, 闵凡飞, 薛婷婷, 卢春阳, 刘玉新. SiCp/Al复合材料界面调控研究进展[J]. 材料导报, 2021, 35(13): 13139-13147.
[2] 颜蜀雋, 熊海龙, 庞忠荣, 万鹏颖, 庄壮, 齐福刚. 新型无机纳米填料改性海泡石的制备及在环氧树脂涂料中的性能[J]. 材料导报, 2021, 35(12): 12057-12062.
[3] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[4] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[5] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[6] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[7] 李宵波, 张盼盼, 何亚鹏, 黄惠, 郭忠诚. 铅酸电池负极添加剂的研究进展[J]. 材料导报, 2020, 34(5): 5039-5047.
[8] 时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
[9] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[10] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[11] 樊伟, 田甜, 崔艳芳, 周淑娟. 采用爆炸喷涂法揭示新型(Sm1-XGdX)2Zr2O7缓烧蚀材料隔热机理[J]. 材料导报, 2019, 33(Z2): 134-137.
[12] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[13] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[14] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[15] 张正飞, 秦紫依, 李勇, 王毅. 相变材料的过冷现象及其抑制方法的研究进展[J]. 材料导报, 2019, 33(21): 3613-3619.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed