Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13139-13147    https://doi.org/10.11896/cldb.20060169
  金属与金属基复合材料 |
SiCp/Al复合材料界面调控研究进展
朱志强, 王庆平*, 闵凡飞, 薛婷婷, 卢春阳, 刘玉新
安徽理工大学材料科学与工程学院,淮南 232001
Research Progress on Interface Control of SiCp/Al composites
ZHU Zhiqiang, WANG Qingping*, MIN Fanfei, XUE Tingting, LU Chunyang, LIU Yuxin
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
下载:  全 文 ( PDF ) ( 10925KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 SiCp/Al复合材料具备一系列优异的物理性能,是航空航天、电子封装、装备、核电、汽车、轨道交通等国家重大需求和国民经济装备制造所需的关键材料。但是,工业精密仪器关键零部件对SiCp/Al复合材料的性能要求相对较高,导致复合材料在诸多高端领域的应用受到了严重限制,因而提升SiCp/Al复合材料的整体性能是当前亟需解决的重要难题。对于给定的增强体与基体,界面相具有的微观结构和物化性质是影响SiCp/Al复合材料性能的决定因素。然而,界面相在形成过程中通常会出现润湿性差、结构缺陷多以及生成不良界面产物等问题,对SiCp/Al复合材料的性能产生了严重的负面影响。因此,有效实现界面的可控设计成为提升复合材料性能的关键。根据近几年关于SiCp/Al复合材料界面调控的研究工作来看,增强体颗粒表面改性在抑制增强体与基体之间的相互扩散以及减缓化学反应速率等方面发挥着重要作用,而表面改性处理的方式通常包括酸洗、高温氧化和添加涂层等。在基体中添加合金元素能够有效降低铝液的表面张力,改善SiCp/Al复合材料界面相的润湿性,同时可抑制不良界面反应的发生。目前合金化处理添加的元素通常包括Mg、Si、Cr、Ti、Fe等。在SiCp/Al复合材料的制备过程中,烧结温度、保温时间、冷却速率、成型压力、球磨时间以及烧结气氛等成型工艺参数均会影响界面的反应程度,因而对成型工艺的优化改进同样能够有效调控复合材料的界面信息,以实现对SiCp/Al复合材料性能的提升。本文结合SiCp/Al复合材料界面相具有的微观结构和物化性质,从增强体颗粒表面改性、基体合金化和成型工艺优化改进三个角度综述了SiCp/Al复合材料界面调控的研究现状,并对其未来发展的整体趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱志强
王庆平
闵凡飞
薛婷婷
卢春阳
刘玉新
关键词:  SiCp/Al复合材料  界面调控  表面改性  基体合金化    
Abstract: SiCp/Al composites have excellent physical properties and is a key material for applications in aerospace, electronic packaging, equipment, nuclear power, automobiles, rail transit and other sensitive defence equipment manufacturing. However, the key components of industrial precision instruments have relatively high performance requirements for SiCp/Al composites leading to severe restrictions on the wide application of composite materials in many high-end fields. Therefore, it is needed badly to improve the overall performance of SiCp/Al composites to meet the requirements. The microstructure and physicochemical properties of the interface phase are the determinants of the performance of the SiCp/Al composites. However, during the formation of the interfacial phase, problems such as poor wettability, structural defects and the formation of undesirable interfacial products usually have serious adverse effects on the performance of the SiCp/Al composites. Therefore, controllable design of the interface has become the key to improve the performance of the composite material. According to recent research work on the interface control of SiCp/Al composites, the surface modification of the reinforcement particles plays an important role in inhibiting the interdiffusion between the reinforcement and the matrix and slowing down the rate of the chemical reaction. Modification methods usually include pickling, high-temperature oxidation, and coating addition. By adding alloying elements to the matrix, it can effectively reduce the surface tension of the aluminum liquid, improve the wettability of the interface phase of the SiCp/Al composites, and at the same time play a role in suppressing the occurrence of adverse interface reactions. Currently, the elements added by alloying treatment include Mg, Si, Cr, Ti, Fe, etc. In the preparation process of SiCp/Al composites, the forming process parameters such as sintering temperature, holding time, cooling rate, forming pressure, ball milling time and sintering atmosphere will affect the reaction degree of the interface, so the optimization of the forming process can also effectively adjust the interface of the composite material to improve the performance of the SiCp/Al composites. This paper is based on the microstructure and physicochemical properties of the interface phase of SiCp/Al composites and the research on the interface regulation of SiCp/Al composites is reviewed from three perspectives: surface modification of reinforcement particles, matrix alloying and optimization of molding process. The overall trend of interface control of SiCp/Al composites in the future is prospected.
Key words:  SiCp/Al composites    interface control    surface modification    matrix alloying
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TF124  
基金资助: 国家自然科学基金项目(51501002);安徽省博士后科学基金项目(2017B213)
作者简介:  朱志强,2018年6月毕业于安徽理工大学,获得工学学士学位。现为安徽理工大学材料科学与工程学院硕士研究生,在王庆平教授的指导下进行相关研究。目前主要研究领域为SiCp/Al复合材料的界面调控。
王庆平,工学博士,教授,硕士研究生导师;长三角高校先进材料创新联盟理事,安徽省水泥标准委员会委员,安徽省粉末冶金学会理事,美国德州理工大学、墨西哥圣路易斯波多西自治大学访问学者;安徽省优秀青年人才,安徽理工大学材料学科方向带头人、中青年学术骨干、教坛新秀;现为材料学院无机材料与资源循环系主任。先后主持与参加国家自然科学基金项目、安徽省自然科学基金、安徽省教育厅自然科学研究重大项目、安徽省优秀青年基金重点项目、淮南市重点科技项目11项和横向协作课题10余项以及省级质量工程项目8项。在Materials Letters、Journal of Materials Science、《中国有色金属学报》及国内外会议上发表论文50余篇,其中SCI、EI收录30余篇,授权国家发明专利5项,荣获省部级二等奖2项,省教学成果二等奖和三等奖各1项,出版教材2部、专著1部。
引用本文:    
朱志强, 王庆平, 闵凡飞, 薛婷婷, 卢春阳, 刘玉新. SiCp/Al复合材料界面调控研究进展[J]. 材料导报, 2021, 35(13): 13139-13147.
ZHU Zhiqiang, WANG Qingping, MIN Fanfei, XUE Tingting, LU Chunyang, LIU Yuxin. Research Progress on Interface Control of SiCp/Al composites. Materials Reports, 2021, 35(13): 13139-13147.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060169  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13139
1 Hong Y, Wang W J, Liu J Q, et al. Transactions of Nonferrous Metals Society of China,2019,29(5),941.
2 Sun J, Chen G H, Wang B H, et al. Journal of Materials Engineering and Performance,2019,28(5),2697.
3 Chintada S, Dora S P, Prathipati R. Silicon,2019,11,2907.
4 Li N, Hong Y, Wang Z W. Applied Sciences,2018,8(3),372.
5 Fan T X, Shi Z L. Materials Review,1999,13(4),65(in Chinese).
范同祥,施忠良.材料导报,1999,13(4),65.
6 Lee J C, Lee H I, Ahn J P, et al. Metallurgical & Materials Transactions A,2000,31(9),2361.
7 Wu G H, Jiang L T, Chen G Q, et al. Progress of Materials in China,2012,31(7),51(in Chinese).
武高辉,姜龙涛,陈国钦,等.中国材料进展,2012,31(7),51.
8 Yang D L, Qiu F, Lei Z K, et al. Materials Science and Engineering A,2016,661(20),217.
9 Romero J C, Wang L, Arsenault R J. Materials Science and Engineering A,1996,212(1),1.
10 Liu J, Zhou G T, Chen C B, et al. Transactions of the China Welding Institution,2015,36(8),43(in Chinese).
刘骏,周广涛,陈聪彬,等.焊接学报,2015,36(8),43.
11 Mao X Z, Hong Y, Zhang Y J, et al. Transactions of Nonferrous Metals Society of China,2017,27(12),2493.
12 Chen Z Z, Tan Z Q, Ji G, et al. Advanced Engineering Materials,2015,17(7),1076.
13 Ikeno S, Matsuda K, Rengakuji S, et al. Journal of Materials Science,2001,36(8),1921.
14 He Y Q, Qiao B, Wang N, et al. Advanced Composites Letters,2009,18(4),139.
15 Fan T X, Zhang D, Wu R J, et al. Journal of Materials Science,2002,37(24),5191.
16 Xu H B, Yan J C, Xu Z W, et al. Composites Part A,2006,37(9),1457.
17 Ma J L. Study on microstructure and consolidation behavior of SiCp/Al matrix composites prepared by severe plastic deformation. Master’s Thesis, Hefei University of Technology, China,2016(in Chinese).
马俊林.大塑性变形法制备SiCp/Al基复合材料的微观结构及其固结行为研究.硕士学位论文,合肥工业大学,2016.
18 Zou A H. Study on the correlation between microstructure and thermal conductivity of particle reinforced aluminum matrix composites. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2016(in Chinese).
邹爱华.颗粒增强铝基复合材料微结构与热传导关联研究.博士学位论文,南京航空航天大学,2016.
19 Chu D S, Ma Y, Tang P J, et al. Applied Composite Materials,2020,27(1-2),95.
20 Yan J C, Xu H B, Xu Z W, et al. Transactions of Nonferrous Metals Society of China,2005,15(5),993.
21 Huang Z Y, Zhang X X, Xiao B L, et al. Journal of Alloys and Compounds,2017,722,145.
22 Li P B, Chen T J. Journal of Materials Research,2016,31(18),2850.
23 Liu P, Wang A Q, Xie J P, et al. Transactions of Nonferrous Metals Society of China,2015,25(5),1410.
24 Gong D, Cao Y F, Zhan Y L, et al. Materials Science and Engineering A,2020,771,1386.
25 Gao H T, Liu X H, Qi J L, et al. Ceramics International,2019,45(17),22402.
26 Shen Q Y, Yuan Z W, Liu H, et al. Materials Science and Engineering A,2020,782,1.
27 Kong X J, Wang M H, Wang B, et al. Applied Physics A,2019,125(9),596.
28 Xu L, Chen Z R, Li C Y, et al. Rare Metal Materials and Engineering,2018,47(1),169(in Chinese).
许磊,陈志茹,历长云,等.稀有金属材料与工程,2018,47(1),169.
29 Li D S, Zhou X L, Zhou A H, et al. Advanced Materials Research,2012,535,227.
30 Hao L, He Y Q, Wang N, et al. Advanced Composite Materials,2009,18(4),351.
31 Liu M K. Study on interface evolution and mechanical properties of stir casting SiCp/2014Al composite. Master’s Thesis, Harbin Institute of Technology, China,2013(in Chinese).
刘明坤.搅拌铸造SiCp/2014Al复合材料界面演化与力学性能研究.硕士学位论文,哈尔滨工业大学,2013.
32 Wang X G, Ren H Y, Zhu M, et al. Advanced Materials Research,2012,490-495,3816.
33 Wang P, Xu D X, Niu J T. Applied Physics,2016,122(12),1.
34 Yue Y Y, Xu D X, Tian J F, et al. Materials Science and Technology,2018,34(4),13.
35 Zou A H, Zhou X L, Li D S, et al. Composite Interfaces,2013,20(2),107.
36 Arrabal R, Pardo A, Merino M C, et al. Journal of Thermal Spray Technology,2011,20(3),569.
37 Davidson A M, Regener D. Composites Science and Technology,2000,60(6),865.
38 Li P B, Chen T J, Qin H. Materials and Design,2016,112(15),34.
39 Dhandapani P, Ravi K R. Advanced Materials Research,2012,585,301.
40 Ren S B, Xu H, He X B, et al. Applied Mechanics and Materials,2014,496-500,275.
41 Cong X S. Wettability of silicon carbide by molten aluminum alloys and theirs interficial microstructures. Master’s thesis, Jilin University, China,2014(in Chinese).
丛晓霜.Al及其合金与多晶α-SiC陶瓷的润湿及界面结构.硕士学位论文,吉林大学,2014.
42 Laurent V, Chatain D, Eustathopoulos N. Materials Science and Enginee-ring A,1991,135,89.
43 Dehnavi M R, Niroumand B, Ashrafizadeh F, et al. Materials Science and Engineering A,2014,617(3),73.
44 Fan T X, Shi Z L, Zhang D, et al. Journal of Materials Science,1999,34(1),59.
45 Cui Y, Zhang L, Zhao H Y. Journal of Aeronautical Materials,2009(6),47(in Chinese).
崔岩,张磊,赵会友.航空材料学报,2009(6),47.
46 Qian F. Study on SiCp/Al composites prepared by pressureless infiltration. Master’s Thesis, Nanjing University of Science and Technology, China,2008(in Chinese).
钱凤.无压浸渗法制备SiCp/Al复合材料的研究.硕士学位论文,南京理工大学,2008.
47 Pang J C, Fan G H, Cui X P, et al. Materials Science and Engineering A,2013,582,294.
48 Geng L, Wang H L, Song Y B, et al. Materials Science Forum,2010,654,404.
49 Wu G H, Zhang Y H, Kang P C. Rare Metal Materials and Engineering,2007,36(3),328(in Chinese).
武高辉,张云鹤,康鹏超.稀有金属材料与工程,2007,36(3),328.
50 Chen C. Microstructure and properties of SiCp/Al-Si composites for electronic packaging. Master’s Thesis, Shandong University, China,2012(in Chinese).
陈成.电子封装用SiCp/Al-Si复合材料的组织观察及性能研究.硕士学位论文,山东大学,2012.
51 Kamerling S, Schlarb A K. Composites Science and Technology,2019,175(3),69.
52 Wang A Q, Guo H D, Li M, et al. Advances in Engineering,2017,100,647.
53 Liu L F, Zhang F H. The International Journal of Advanced Manufactu-ring Technology,2017,88(1),899.
54 Wang K, Zhang Z M, Yu T, et al. Journal of Materials Processing Technology,2016,242,60.
55 Yu Y W. The influence of the surface modification of SiCp on the interface and thermal conductivity of SiCp/Al composites. Master’s Thesis, Nanchang Aeronautical University, China,2014(in Chinese).
俞应炜.SiCp表面改性及其Al基复合材料界面和宏观热导率研究.硕士学位论文,南昌航空大学,2014.
56 Cui Y, Geng L. Transactions of Nonferrous Metals Society of China,1997,7(4),159(in Chinese).
崔岩,耿林.中国有色金属学报,1997,7(4),159.
57 Ni Z L, Wang A Q, Xie J P, et al. Advanced Materials Research,2012,538-541,326.
58 Wang P, Gao Z, Cheng D F, et al. Modern Physics Letters B,2017,31(8),175.
59 Liu G W, Luo W Q, Zhang X Z, et al. Rare Metals,2017,12(7),63.
60 Cui Y, Guo S, Zhao H Y. Journal of Aeronautical Materials,2010,30(6),51(in Chinese).
崔岩,郭顺,赵会友.航空材料学报,2010,30(6),51.
61 Liu Y, Li G D, Jiang W T. Materials,2019,12(9),1537.
62 Yang D L, Qiu F, Zhao W X, et al. Materials and Design,2015,87(15),1100.
63 Dong C G, Cui R, Wang R C, et al. Transactions of Nonferrous Metals Society of China,2020,30(4),863.
64 Li D S, Wu W Z, Yu Y W, et al. Journal of Functional Materials,2015,46(18),18092(in Chinese).
李多生,吴文政,俞应炜,等.功能材料,2015,46(18),18092.
65 Zhang Z X, Wu X L, Liu G W, et al. Transactions of Nonferrous Metals Society of China,2018,28(9),1784.
66 Wang H, Yang X J, Xu J H, et al. Journal of Wuhan University of Technology-Materials Science Edition,2019,34(3),534.
67 Ren S B, He X B, Qu X H, et al. Journal of Alloys and Compounds,2008,455(1-2),426.
68 Guo J. The effects and mutual action of alloy elements and SiC particulate surface conditions on the interface of SiCp/Al composites. Ph.D. Thesis, Zhengzhou University, China,2003(in Chinese).
郭建.合金元素及增强体表面状况对SiCp/Al复合材料界面的影响及其交互作用.博士学位论文,郑州大学,2003.
69 He Y Q, Xu H L, Qian C C, et al. Journal of Materials Engineering,2018,46(12),124.
70 Long J, Zhang L J, Zhang L L, et al. Journal of Manufacturing Processes,2020,49,373.
71 Zhou X L, Zou A H, Hua X Z, et al. Materials Science Forum,2009,610-613,546.
72 Chen Y X, Wang R C, Wang X F, et al. Transactions of Nonferrous Metals Society of China,2016,26(6),1228(in Chinese).
陈以心,王日初,王小锋,等.中国有色金属学报,2016,26(6),1228.
73 Xue L Y, Wang F C, Wang Y W, et al. Rare Metal Materials and Engineering,2014,43(8),1908(in Chinese).
薛辽豫,王富耻,王扬卫,等.稀有金属材料与工程,2014,43(8),1908.
74 Lei Y C, Zhang Z, Nie J J, et al. Transactions of Nonferrous Metals Society of China,2008(4),809.
75 Chen Y L, Yu L G, Wang H M. Acta Materiae Compositae Sinica,2000,17(4),63(in Chinese).
陈永来, 于利根,王华明.复合材料学报,2000,17(4),63.
76 Zhang G F, Guo Y, Zhang L J, et al. Transactions of Nonferrous Metals Society of China,2012,22(6),1674(in Chinese).
张贵锋,郭洋,张林杰,等.中国有色金属学报,2012,22(6),1674.
77 Lei Y C, Xue H L, Hu W X, et al. Transactions of the Nonferrous Metals Society of China,2012,22(2),302.
78 Hu Q H, Zhang Y F, Xiong S, et al. Rare Metals,2019(10),1023(in Chinese).
胡清华,张义福,熊斯,等.稀有金属,2019(10),1023.
79 Zou A H, Zhou X L, Kang Z B, et al. Journal of Inorganic Materials,2019,34(11),1167(in Chinese).
邹爱华,周贤良,康志兵,等.无机材料学报,2019,34(11),1167.
80 Wu Q J. Microstructure and first-principles study on interface of SiC/Al matrix composite. Ph.D. Thesis, Zhengzhou University, China,2019(in Chinese).
武庆杰.SiC/Al基复合材料界面的显微结构及第一性原理研究.博士学位论文,郑州大学,2019.
81 Wu K Y. First-principles and experimental study on the effect of alloying element and interface phase Al4C3 on the SiC/Al interface. Master’s Thesis, Nanchang Aeronautical University, China,2016(in Chinese).
吴开阳.合金元素和界面相Al4C3对SiC/Al界面结合影响的第一性原理及实验研究.硕士学位论文,南昌航空大学,2016.
82 Mao X Z, Hong Y, Wang B H, et al. Powder Metallurgy,2017,61(9),1.
83 Huang Y Q, Chen G H, Wang B H, et al. Russian Journal of Non Ferrous Metals,2019,60(3),312.
84 Ma G N, Wang D, Liu Z Y, et al. Acta Metallurgica Sinica,2019(10),1319(in Chinese).
马国楠,王东,刘振宇,等.金属学报,2019(10),1319.
85 Xue C, Yu J K. Materials and Design,2014,53,74.
86 Fan J Z, Zuo T, Xiao B L, et al. Acta Materiae Compositae Sinica,2004,21(4),92.
87 Carvalho O, Madeira S, Buciumeanu M, et al. Journal of Composite Materials,2015,50(21),4491.
88 Yuan G S, Li M K, Wang Z Y, et al. Hot Working Technology,2017,46(12),123(in Chinese).
原国森,李明科,王振永,等.热加工工艺,2017,46(12),123.
89 Wang S P. The effect of electroless nickle plating on SiCp and preparation of SiCp/Al composites on corrosion resistance. Master’s Thesis, Nanchang Aeronautical University, China,2017(in Chinese).
汪松萍.SiCp化学镀Ni及SiCp/Al复合材料制备方法对耐蚀性的影响.硕士学位论文,南昌航空大学,2017.
90 Nie C Z. Research on fabrication technique and property of SiCp reinforced 6061 aluminum matrix composites by MA and P/M. Master’s Thesis, Tianjin University, China,2004(in Chinese).
聂存珠.机械合金化-粉末冶金SiCp/6061Al复合材料的制备工艺及性能研究.硕士学位论文,天津大学,2004.
91 Hao S M. Study on preparation, micro structure and properties of medium volume fraction SiCp/Al composites. Ph.D. Thesis, Zhengzhou University, China,2015(in Chinese).
郝世明.中体积分数SiCp/Al复合材料的制备和微结构及性能研究.博士学位论文,郑州大学,2015.
92 Dong C G, Wang R C, Chen Y X, et al. Transactions of Nonferrous Metals Society of China,2020,30,1452.
93 Bao J X, Zhang G, Gao Q, et al. Ceramics International,2020,46,5459.
[1] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[2] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[3] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[4] 时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
[5] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[6] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[7] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[8] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[9] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[10] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[11] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[12] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[13] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[14] 沈海洋, 王正洲. 钢渣的表面改性及其在橡胶中应用研究[J]. 材料导报, 2018, 32(6): 1000-1003.
[15] 刘帅洋, 王爱琴, 吕世敬, 田捍卫. 铜铝层状复合材料界面特性及深加工研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 828-835.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed