Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14012-14016    https://doi.org/10.11896/cldb.20050209
  无机非金属及其复合材料 |
NH3和N2混合等离子体预处理对锗MOS器件性能的影响
乌李瑛1,*, 柏荣旭2, 瞿敏妮1, 付学成1, 田苗1, 马玲1, 王英1, 程秀兰1
1 上海交通大学电子信息与电气工程学院先进电子材料与器件平台,上海 200240
2 芬兰倍耐克有限公司上海代表处,上海 200135
Effect of NH3 /N2 Mixed Plasma Pretreatment on the Performance of Ge MOS Devices
WU Liying1,*, BAI Rongxu2, QU Minni1, FU Xuecheng1, TIAN Miao1, MA Ling1, WANG Ying1, CHENG Xiulan1
1 Center for Advanced Electronic Materials and Devices, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,Shanghai 200240, China
2 Beneq Oy Shanghai Rep. Office, Shanghai 200135, China
下载:  全 文 ( PDF ) ( 2814KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对锗衬底进行NH3和N2混合等离子体(V(NH3):V(N2)= 5:1)原位预处理,其自然氧化层GeOx反应生成GeOyNz。XPS结果显示,随着预处理时间的延长,GeOyNz厚度稍有增加。结构为500 nm Al/20 nm Ti/10 nm HfO2/Ge的锗MOS电容样品,在1 V的偏压下,未经过原位等离子体预处理的样品的漏电流密度为10-4A/cm2量级,而120 s NH3/N2混合等离子体预处理后的样品的漏电流密度减小到10-5 A/cm2量级;所有等离子体预处理样品的C-V曲线不存在明显的翘曲变形,表明样品的界面陷阱电荷密度较低;通过C-V曲线计算可得,NH3/N2混合等离子体预处理60 s后样品的等效电容约为17,小于理想HfO2的介电常数值,说明预处理条件下仍有不可忽略的层间电容。与其他预处理方法相比,NH3/N2混合等离子体原位预处理锗衬底可以更加有效地提高锗衬底上原子层沉积HfO2层间界面的质量,抑制Ge向HfO2的扩散,对界面的陷阱电荷有重要的限制作用。在提高锗MOS器件的性能方面,NH3和N2混合等离子体原位预处理的方法在工业生产中更具有潜在优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乌李瑛
柏荣旭
瞿敏妮
付学成
田苗
马玲
王英
程秀兰
关键词:  锗MOS  原子层沉积  原位等离子体预处理  二氧化铪薄膜  高介电常数  漏电流密度    
Abstract: The germanium substrates were pretreated in situ with a mixture of NH3 and N2 plasma, and the native oxide GeOxwere transformed to GeOyNz. The XPS results showed that with the increase of pretreatment time, the thickness of GeOyNz increased slightly. For the germa-nium MOS capacitor samples with structure of 500 nm Al/20 nm Ti/10 nm HfO2/Ge at the bias voltage of 1 V, the leakage current of the samples without in-situ plasma pretreatment were an order of 1×10-4A/cm2, while the leakage current of the samples under the condition of 120 s NH3/N2 mixed plasma pretreatment were reduced to an order of 1×10-5A/cm2. The C-V curves of all samples pretreated by NH3/N2 plasma showed no obvious warpage deformation, indicating that the interface trap charge density of the samples was low; according to the calculation of C-V curve, the equivalent capacitance of the sample for 60 s NH3/N2 mixed plasma pretreatment is about 17, which is less than the dielectric constant value of ideal HfO2, indicating that there is still a non-negligible interface capacitance under the pretreatment condition. Compared with other pretreatment methods,in-situ pretreatment of germanium substrate by NH3/N2 mixed plasma can more effectively improved the quality of interface of atomic layer deposited HfO2 on germanium substrate, inhibited the diffusion of Ge to HfO2, and played an important role in limiting the trap charge the interface. It had more potential advantages in improving the performance of Ge-MOS devices in industrial production.
Key words:  germanium MOS    atomic layer deposition    in situ plasma pretreatment    hafnium dioxide film    high dielectric constant    leakage current density
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TM21  
基金资助: 国家科技部“十三五”高性能计算重点研发计划项目子课题(2016YFB0200205); 2018年度上海研发公共服务平台建设项目(18DZ2295400); 上海交通大学决策咨询课题(JCZXSJB2019-005; JCZXSJB2018-022)
通讯作者:  * lynn_wu@sjtu.edu.cn   
作者简介:  乌李瑛,上海交通大学先进电子材料与器件平台助理研究员。2001年9月至2011年1月,在西安交通大学获得应用物理专业理学学士学位和凝聚态物理专业理学博士学位。其中2008—2010年到美国宾夕法尼亚州立大学和德州大学圣安东尼奥分校进行访问、合作研究。以第一作者在国内外学术期刊上发表论文10余篇。研究工作主要围绕国家重点发展的先进材料的薄膜生长工艺和纳米器件的加工工艺。
引用本文:    
乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
WU Liying, BAI Rongxu, QU Minni, FU Xuecheng, TIAN Miao, MA Ling, WANG Ying, CHENG Xiulan. Effect of NH3 /N2 Mixed Plasma Pretreatment on the Performance of Ge MOS Devices. Materials Reports, 2021, 35(14): 14012-14016.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050209  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14012
1 Toriumi A, Nishimura T. Japanese Journal of Applied Physics, 2017, 57, 010101.
2 Shang H, Frank M M, Gusev E P, et al. IBM Journal of Research and Development, 2006, 50, 377.
3 Gusev E P, Shang H, Copel M, et al. Applied Physics Letters, 2004, 85, 2334.
4 Houssa M, Pourtois G, Caymax M, et al. Surface Science, 2008, 602, L25.
5 Pourtois G, Houssa M, Delabie A, et al. Applied Physics Letters, 2008, 92, 032105.
6 Taoka N, Harada M, Yamashita Y. Applied Physics Letters, 2008, 92, 113511.
7 Li X F, Liu X J, Zhang W Q, et al. Applied Physics Letters, 2011, 98, 162903.
8 Zhang R, Huang P C, Taoka N, et al. Applied Physics Letters, 2016, 108, 052903.
9 Wang X, Xiang J, Wang W, et al. Applied Surface Science, 2015, 357, 1857.
10 Wang X, Xiang J, Zhao C, et al. In: IEEE Electron Devices Technology and Manufacturing Conference (EDTM). Japan, 2017, pp.162.
11 Hosoi T, Kutsuki K, Okamoto G, et al. Applied Physics Letters, 2009, 94, 202112.
12 Xie Q, Musschoot J, Schaekers M, et al. Applied Physics Letters, 2010, 97, 222902.
13 Zhou L, Wang X, Han K, et al. IEEE Transactions on Electron Devices, 2019, 66,1669.
14 Li X F, Liu X J, Cao Y Q, et al. Applied Surface Science,2013,264,783.
15 Matsubara H, Sasada T, Takenaka M. Applied Physics Letters, 2008, 93, 032104.
16 Kita K, Suzuki S, Nomura H, et al. Japanese Journal of Applied Physics, 2008, 47, 2349.
17 Sasada T, Nakakita Y, Takenaka M, et al. Journal of Applied Physics, 2009, 106, 073716.
18 Chui C O, Ito F, Saraswat K C. IEEE Electron Device Letters, 2004, 25, 613.
19 Kuzum D, Pethe A J, Krishnamohan T, et al. In: Technical Digest—International Electron Devices Meeting.Washington DC, USA, 2007, pp. 723.
20 Tatsuro M, Tetsuji Y, Masayasu N, et al. Applied Physics Letters, 2004,85,3181.
21 Oshima Y, Shandalov M, Sun Y, et al. Applied Physics Letters, 2009, 94, 183102.
22 Cao Y Q, Chen J, Liu X J, et al. Applied Surface Science, 2015, 325, 13.
23 Zhao Y, Wang L, Zhang J L, et al. Acta Physico-Chimica Sinica, 2014, 30(4), 738 (in Chinese).
赵越,王丽,张家良,等. 物理化学学报,2014, 30(4), 738.
24 Taylor J A, Lancaster G M, Rabalais J W. Journal of Electron Spectroscopy Related Phenomena, 1978, 13, 435.
25 Larkins F P, Lubenfeld A. Journal of Electron Spectroscopy Related Phenomena, 1979, 15, 137.
26 Cao P J, Zhu D L, Ma X C, et al. Journal of Vacuum Science and Technology, 2005, 25(5), 328 (in Chinese).
曹培江,朱德亮,马晓翠,等. 真空科学与技术学报, 2005,25(5), 328.
27 Pashutski A, Folman M. Surface Science, 1989, 216, 395.
28 Chi X W, Lan X L, Lu C, et al. Materials Research Express, 2016, 3, 035012.
29 Maeda T, Nishizawa M, Morita Y, et al. Applied Physics Letters, 2007, 90, 072911.
30 Wang Y Y,Zhang X,Liu X Y, et al. Science in China(Series E):Technological Sciences,2008,38(6),921 (in Chinese).
王阳元,张兴,刘晓彦,等. 中国科学E辑:信息科学,2008,38(6),921.
31 Won Y, Park S, Koo J, et al. Applied Physics Letters, 2005, 87, 262901.
[1] 明帅强, 文庆涛, 高雅增, 闫美菊, 卢维尔, 夏洋. 基于原子层沉积技术制备氧化钽薄膜及其特性研究[J]. 材料导报, 2021, 35(6): 6042-6047.
[2] 郭俊江,朱香平,许彦涛,曹伟伟,邹永星,陆敏,彭波,司金海,郭海涛. 原子层沉积微通道板的研究进展[J]. 材料导报, 2020, 34(3): 3080-3089.
[3] 乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. 原子层沉积氮化钽薄膜的研究进展[J]. 材料导报, 2020, 34(19): 19101-19110.
[4] 刘律宏, 刘燕萍, 马晋遥, 桑利军, 程晓鹏, 张跃飞. 利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能[J]. 材料导报, 2019, 33(18): 3026-3030.
[5] 李玉超, 付雪连, 战艳虎, 谢倩, 葛祥才, 陶绪泉, 廖成竹, 卢周广. 高介电常数、低介电损耗聚合物复合电介质材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 18-23.
[6] 代秀红, 赵红东, 张宇生, 葛大勇, 宋建民, 刘保亭. 溶胶-凝胶法制备Bi0.975La0.025Fe0.975Ni0.025O3铁电薄膜的结构及物理性能*[J]. 《材料导报》期刊社, 2017, 31(15): 149-152.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed