Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 149-152    https://doi.org/10.11896/j.issn.1005-023X.2017.015.023
  铁电及铁磁材料 |
溶胶-凝胶法制备Bi0.975La0.025Fe0.975Ni0.025O3铁电薄膜的结构及物理性能*
代秀红1,2, 赵红东1, 张宇生2, 葛大勇2, 宋建民2, 刘保亭2
1 河北工业大学电子信息工程学院, 天津300401;
2 河北大学物理科学与技术学院, 保定 071002;
Structural and Physical Properties of Bi0.975La0.025Fe0.975Ni0.025O3 Thin Film Prepared by Sol-gel Method
DAI Xiuhong1,2, ZHAO Hongdong1, ZHANG Yusheng2, GE Dayong2, SONG Jianmin2, LIU Baoting2
1 School of Electronic and Information Engineering, Hebei University of Technology,Tianjin 300401;
2 College of Physics Science & Technology, Hebei University, Baoding 071002;
下载:  全 文 ( PDF ) ( 1436KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法在Pt/Ti/SiO2/Si(111)衬底上制备了Bi0.975La0.025Fe0.975Ni0.025O3(BLFNO)铁电薄膜。利用X射线衍射(XRD)、原子力显微镜(AFM)及其压电模式(PFM)对薄膜的晶体结构、表面形貌以及铁电畴结构进行了研究。研究发现,BLFNO为结晶良好的钙钛矿结构多晶薄膜,且薄膜表面颗粒生长均匀。PFM测试图显示铁电薄膜在自发极化下的铁电畴结构清晰,铁电电容器具有良好的铁电性能。应用铁电测试仪对Pt/BLFNO/Pt电容器进行测量,得到了饱和性良好的电滞回线。在828 kV/cm的外加电场下,Pt/BLFNO/Pt电容器的剩余极化强度为74.3 μC/cm2,表明La、Ni的共掺杂没有明显抑制铁电电容器的剩余极化强度,铁电电容器具有良好的铁电性能。漏电流研究结果表明,La、Ni元素的共掺杂有效降低了薄膜的漏电流密度,在277.8 kV/cm外加电场下漏电流密度在10-4 A/cm2量级,明显小于纯BFO薄膜的漏电流密度。正半支漏电流曲线满足SCLC导电机制,对于负半支曲线,当电场强度大于22.2 kV/cm时,同样遵循SCLC导电机制;但是,当电场强度小于22.2 kV/cm时,曲线斜率约为4.8,表明参与导电贡献的电子数较多,归因于极浅陷阱俘获的电子在外加电场作用下参与了导电行为。室温下磁滞回线测试结果表明BLFNO薄膜具有反铁磁性质。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代秀红
赵红东
张宇生
葛大勇
宋建民
刘保亭
关键词:  溶胶-凝胶  Bi0.975La0.025Fe0.975Ni0.025O3    剩余极化强度  漏电流密度  反铁磁    
Abstract: Bi0.975La0.025Fe0.975Ni0.025O3 (BLFNO) ferroelectric film was fabricated on Pt/Ti/SiO2/Si (111) substrate by a sol-gel process. X-ray diffraction system (XRD), atomic force microscope (AFM), piezoresponse force microscopy (PFM) were used to characterize the crystal structure, morphology, and ferroelectric domain information. It was found that the well-crystallized perovskite BLFNO film is polycrystalline with grains almost uniformly distributed. Very obvious domain structures could be observed from the PFM image, indicating different orientaions of the grains related to ferroelectric domains. Moreover, it was found that Pt/BLFNO/Pt ferroelectric capacitor possesses very good ferroelectric properties, as the remnant polariztion is 74.3 μC/cm2 under 828 kV/cm electric field, which demonstrated that the La and Ni co-doping does not obviously decrease the remnant polarization of the capacitor. Compared to the pure BFO film, La and Ni co-doping can lower the leakage current density of Pt/BLFNO/Pt capacitor to the magnitude of 10-4 A/cm2 under 277.8 kV/cm electric field. The magnetic hysteresis loops of the BLFNO film measured at room temperature confirmed the antiferromagnetic property of Bi0.975La0.025Fe0.975Ni0.025O3 film.
Key words:  sol-gel    Bi0.975La0.025Fe0.975Ni0.025O3    remnant polarization    leakage current density    antiferromagnetism
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TM22  
基金资助: *国家自然科学基金(11374086;11074063); 河北省自然科学基金(E2014201188)
作者简介:  代秀红:女,1978年生,博士研究生,副教授, 研究方向为钙钛矿氧化物薄膜制备及性能研究 E-mail:daixiuhong@hbu.edu.cn 刘保亭:通讯作者,男,1963年生,博士,教授,博士研究生导师,研究方向为铁电、铁磁复合薄膜制备及性能研究 E-mail:btliu@hbu.edu.cn
引用本文:    
代秀红, 赵红东, 张宇生, 葛大勇, 宋建民, 刘保亭. 溶胶-凝胶法制备Bi0.975La0.025Fe0.975Ni0.025O3铁电薄膜的结构及物理性能*[J]. 《材料导报》期刊社, 2017, 31(15): 149-152.
DAI Xiuhong, ZHAO Hongdong, ZHANG Yusheng, GE Dayong, SONG Jianmin, LIU Baoting. Structural and Physical Properties of Bi0.975La0.025Fe0.975Ni0.025O3 Thin Film Prepared by Sol-gel Method. Materials Reports, 2017, 31(15): 149-152.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.023  或          https://www.mater-rep.com/CN/Y2017/V31/I15/149
1 Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures [J]. Science,2003, 299:1719.
2 Chen Bin, Li Mi, Liu Yiwei, et al. Effect of top electrodes on photovoltaic properties of polycrystalline BiFeO3 based thin film capacitors [J]. Nanotechnology,2011,22:195201.
3 Tian G, Zhao L, Lu Z X, et al. Fabrication of high-density BiFeO3 nanodot and anti-nanodot arrays by anodic alumina template-assisted ion beam etching [J]. Nanotechnology, 2016,27(48):485302.
4 Cao D W, Wang C Y, Zheng F G, et al. High-efficiency ferroelectric-film solar cells with an n-type Cu2O cathode buffer layer [J]. Nano Lett,2012,12:2803.
5 Yang C H, Seidel J, et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films [J]. Nat Mater,2009,8:485.
6 Kumar M, Arora M, Chauhan S, et al. Raman spectroscopy probed spin-two phonon coupling and improved magnetic and optical properties in Dy and Zr substituted BiFeO3 nanoparticles [J]. J Alloys Compd,2017,692:236.
7 Fan Z, Yao K, Wang J. Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO3/Pt heterostructure [J]. Appl Phys Lett,2014,105:162903.
8 Yang S Y, Seidel J, Byrnes S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices [J]. Nanotechnology,2010,5:143.
9 Wang C, Jin K J, Xu Z T, et al. Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films [J]. Appl Phys Lett,2011,98(19):192901.
10 Giampietri A, Drera G, Pis I. Tracking the amorphous to epitaxial transition in RF-sputtered cubic BFO-STO heterojunctions by means of X-ray photoelectron diffraction [J]. Appl Phys Lett,2016,109(13):132903.
11 Luo J M, Lin S P, Zheng Y, et al. Nonpolar resistive switching in Mn-doped BiFeO3 thin films by chemical solution deposition [J]. Appl Phys Lett,2012,101(6):062902.
12 Scott J F. Applications of modern ferroelectrics [J]. Science, 2007,315:954.
13 Scott J F, Paz de Araujo C A. Ferroelectric memories [J]. Science,1989,246:1400.
14 Yang H, Wang Q, Wang H, et al. Oxygen concentration and its effect on the leakage current in BiFeO3 thin films [J].Appl Phys Lett,2010,96:012909.
15 Zhao Q X, Ma J K, Wei D Y, et al. Epitaxial SrRuO3/BiFeO3/SrRuO3 heterostructure sputtered at low temperature [J]. J Cryst Growth,2011,316:71.
16 Banerjee P, Franco A. Enhanced dielectric and magnetic properties in multiferroic Bi0.99Y0.01Fe0.99Ni0.01O3 ceramic [J]. Mater Lett,2016,184:17.
17 Wang Shuai, Li Kunfang, Fang Ting, et al. Research of room-temperature ferroelectric properties for the Pb doped BiFeO3 [J]. Mater Rev: Res,2014,28(12):237(in Chinese).
汪帅,李坤芳,方婷,等. Pb离子掺杂多铁性材料BiFeO3的铁电性研究 [J]. 材料导报:研究篇,2014,28(12):237.
18 Yu B F, et al. Enhanced multiferroic properties of the high-valence Pr doped thin film [J]. Appl Phys Lett,2008,93:182909.
19 Singh S K, Tomy C V, Era T, et al. Improved multiferroic properties in Sm-doped BiFeO3 thin films deposited using chemical solution deposition method [J]. J Appl Phys,2012,111:102801.
20 Wang H J, Wang S Y, Liu W F, et al. Study on abnormal phenomenon about enhanced electrical conductivity of Bi1-xBaxFeO3 ceramics [J]. Int J Mod Phys B,2014,28:1450009.
21 Hai X, et al. Exchange bias-like phenomenon in Lu doped La0.1Bi0.9FeO3 ceramics [J]. Int J Mod Phys B,2014,28:1350194.
22 Kawae T, Tsuda H, Naganuma H, et al. Composition dependence in BiFeO3 film capacitor with suppressed leakage current by Nd and Mn cosubstitution and their ferroelectric properties [J]. Jpn J Appl Phys,2008,47:7586.
23 Qi X D, Dho J, Tomov R, et al. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3 [J]. Appl Phys Lett,2005,86:062903.
24 Zheng Y J, Tan G Q, Xia A. Structure and multiferroic properties of multi-doped Bi1-xErxFe0.96Mn0.02Co0.02O3 thin films [J]. J Alloys Compd,2016,684:438.
25 Yang K G, Zhang Y L, Yang S H, et al. Structural, electrical, and magnetic properties of multiferroic thin films [J]. J Appl Phys,2010,107:124109.
26 Yu B F, Li M Y, Wang J, et al. Enhanced electrical properties in multiferroic BiFeO3 ceramics co-doped by La3+ and V5+ [J]. J Phys D,2008,41:185401.
27 Chakrabarti K, Das K, Sarkar B, et al. Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles [J]. Appl Phys Lett,2012,101:042401.
28 Singh K,et al. Reduced leakage current in La and Ni codoped BiFeO3 thin films [J]. Appl Phys Lett, 2007,91:112913.
29 Wu J G, Wang J, Xiao D Q, et al. Leakage mechanism of cation-modified BiFeO3 thin film [J]. AIP Adv,2011,1:022138.
30 Peng Z W, Liu B T, Zhu H J, et al. Effect of purple light on the ferroelectric and transport properties of epitaxial Mn-doped BiFeO3 film [J]. Phys Status Solidi A,2012,209:1451.
31 Wang K M, Li L, Su Y T, et al. Epitaxial BiFe0.95Mn0.05O3 film prepared by sol-gel method combined with rapid thermal annealing [J]. Funct Mater Lett,2014,7:1450041.
32 Tredgold R H. Space charge conduction in solids [M]. Amsterdam:Elsevier,1966.
33 Mott N F, Gurney R W. Electronic processes in ionic crystals[M]. Oxford: Clarendon,1940.
34 Lamb D R. Electric conduction mechanisms in thin insulating films[M].London: Methuen,1967.
35 Zubko P, Jung D J, Scott J F. Electrical characterization of PbZr0.4-Ti0.6O3 capacitors [J]. J Appl Phys,2006,100:114113.
36 Bai F M, Wang J L, Wuttig M, et al. Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization [J]. Appl Phys Lett,2005,86:032511.
37 Lee Y H, Wu J M, Lai C H. Influence of La doping in multiferroic properties of BiFeO3 thin films [J]. Appl Phys Lett,2006,88:042903.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[3] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[4] 孙斐, 赵洪峰, 缪奎. 钆掺杂的高非线性和低漏流SnO2基压敏电阻材料[J]. 材料导报, 2025, 39(2): 23110256-4.
[5] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[6] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[7] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[8] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[9] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[10] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[11] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[12] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[13] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[14] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[15] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed