Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 149-152    https://doi.org/10.11896/j.issn.1005-023X.2017.015.023
  铁电及铁磁材料 |
溶胶-凝胶法制备Bi0.975La0.025Fe0.975Ni0.025O3铁电薄膜的结构及物理性能*
代秀红1,2, 赵红东1, 张宇生2, 葛大勇2, 宋建民2, 刘保亭2
1 河北工业大学电子信息工程学院, 天津300401;
2 河北大学物理科学与技术学院, 保定 071002;
Structural and Physical Properties of Bi0.975La0.025Fe0.975Ni0.025O3 Thin Film Prepared by Sol-gel Method
DAI Xiuhong1,2, ZHAO Hongdong1, ZHANG Yusheng2, GE Dayong2, SONG Jianmin2, LIU Baoting2
1 School of Electronic and Information Engineering, Hebei University of Technology,Tianjin 300401;
2 College of Physics Science & Technology, Hebei University, Baoding 071002;
下载:  全 文 ( PDF ) ( 1436KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法在Pt/Ti/SiO2/Si(111)衬底上制备了Bi0.975La0.025Fe0.975Ni0.025O3(BLFNO)铁电薄膜。利用X射线衍射(XRD)、原子力显微镜(AFM)及其压电模式(PFM)对薄膜的晶体结构、表面形貌以及铁电畴结构进行了研究。研究发现,BLFNO为结晶良好的钙钛矿结构多晶薄膜,且薄膜表面颗粒生长均匀。PFM测试图显示铁电薄膜在自发极化下的铁电畴结构清晰,铁电电容器具有良好的铁电性能。应用铁电测试仪对Pt/BLFNO/Pt电容器进行测量,得到了饱和性良好的电滞回线。在828 kV/cm的外加电场下,Pt/BLFNO/Pt电容器的剩余极化强度为74.3 μC/cm2,表明La、Ni的共掺杂没有明显抑制铁电电容器的剩余极化强度,铁电电容器具有良好的铁电性能。漏电流研究结果表明,La、Ni元素的共掺杂有效降低了薄膜的漏电流密度,在277.8 kV/cm外加电场下漏电流密度在10-4 A/cm2量级,明显小于纯BFO薄膜的漏电流密度。正半支漏电流曲线满足SCLC导电机制,对于负半支曲线,当电场强度大于22.2 kV/cm时,同样遵循SCLC导电机制;但是,当电场强度小于22.2 kV/cm时,曲线斜率约为4.8,表明参与导电贡献的电子数较多,归因于极浅陷阱俘获的电子在外加电场作用下参与了导电行为。室温下磁滞回线测试结果表明BLFNO薄膜具有反铁磁性质。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代秀红
赵红东
张宇生
葛大勇
宋建民
刘保亭
关键词:  溶胶-凝胶  Bi0.975La0.025Fe0.975Ni0.025O3    剩余极化强度  漏电流密度  反铁磁    
Abstract: Bi0.975La0.025Fe0.975Ni0.025O3 (BLFNO) ferroelectric film was fabricated on Pt/Ti/SiO2/Si (111) substrate by a sol-gel process. X-ray diffraction system (XRD), atomic force microscope (AFM), piezoresponse force microscopy (PFM) were used to characterize the crystal structure, morphology, and ferroelectric domain information. It was found that the well-crystallized perovskite BLFNO film is polycrystalline with grains almost uniformly distributed. Very obvious domain structures could be observed from the PFM image, indicating different orientaions of the grains related to ferroelectric domains. Moreover, it was found that Pt/BLFNO/Pt ferroelectric capacitor possesses very good ferroelectric properties, as the remnant polariztion is 74.3 μC/cm2 under 828 kV/cm electric field, which demonstrated that the La and Ni co-doping does not obviously decrease the remnant polarization of the capacitor. Compared to the pure BFO film, La and Ni co-doping can lower the leakage current density of Pt/BLFNO/Pt capacitor to the magnitude of 10-4 A/cm2 under 277.8 kV/cm electric field. The magnetic hysteresis loops of the BLFNO film measured at room temperature confirmed the antiferromagnetic property of Bi0.975La0.025Fe0.975Ni0.025O3 film.
Key words:  sol-gel    Bi0.975La0.025Fe0.975Ni0.025O3    remnant polarization    leakage current density    antiferromagnetism
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TM22  
基金资助: *国家自然科学基金(11374086;11074063); 河北省自然科学基金(E2014201188)
作者简介:  代秀红:女,1978年生,博士研究生,副教授, 研究方向为钙钛矿氧化物薄膜制备及性能研究 E-mail:daixiuhong@hbu.edu.cn 刘保亭:通讯作者,男,1963年生,博士,教授,博士研究生导师,研究方向为铁电、铁磁复合薄膜制备及性能研究 E-mail:btliu@hbu.edu.cn
引用本文:    
代秀红, 赵红东, 张宇生, 葛大勇, 宋建民, 刘保亭. 溶胶-凝胶法制备Bi0.975La0.025Fe0.975Ni0.025O3铁电薄膜的结构及物理性能*[J]. 《材料导报》期刊社, 2017, 31(15): 149-152.
DAI Xiuhong, ZHAO Hongdong, ZHANG Yusheng, GE Dayong, SONG Jianmin, LIU Baoting. Structural and Physical Properties of Bi0.975La0.025Fe0.975Ni0.025O3 Thin Film Prepared by Sol-gel Method. Materials Reports, 2017, 31(15): 149-152.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.023  或          http://www.mater-rep.com/CN/Y2017/V31/I15/149
1 Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures [J]. Science,2003, 299:1719.
2 Chen Bin, Li Mi, Liu Yiwei, et al. Effect of top electrodes on photovoltaic properties of polycrystalline BiFeO3 based thin film capacitors [J]. Nanotechnology,2011,22:195201.
3 Tian G, Zhao L, Lu Z X, et al. Fabrication of high-density BiFeO3 nanodot and anti-nanodot arrays by anodic alumina template-assisted ion beam etching [J]. Nanotechnology, 2016,27(48):485302.
4 Cao D W, Wang C Y, Zheng F G, et al. High-efficiency ferroelectric-film solar cells with an n-type Cu2O cathode buffer layer [J]. Nano Lett,2012,12:2803.
5 Yang C H, Seidel J, et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films [J]. Nat Mater,2009,8:485.
6 Kumar M, Arora M, Chauhan S, et al. Raman spectroscopy probed spin-two phonon coupling and improved magnetic and optical properties in Dy and Zr substituted BiFeO3 nanoparticles [J]. J Alloys Compd,2017,692:236.
7 Fan Z, Yao K, Wang J. Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO3/Pt heterostructure [J]. Appl Phys Lett,2014,105:162903.
8 Yang S Y, Seidel J, Byrnes S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices [J]. Nanotechnology,2010,5:143.
9 Wang C, Jin K J, Xu Z T, et al. Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films [J]. Appl Phys Lett,2011,98(19):192901.
10 Giampietri A, Drera G, Pis I. Tracking the amorphous to epitaxial transition in RF-sputtered cubic BFO-STO heterojunctions by means of X-ray photoelectron diffraction [J]. Appl Phys Lett,2016,109(13):132903.
11 Luo J M, Lin S P, Zheng Y, et al. Nonpolar resistive switching in Mn-doped BiFeO3 thin films by chemical solution deposition [J]. Appl Phys Lett,2012,101(6):062902.
12 Scott J F. Applications of modern ferroelectrics [J]. Science, 2007,315:954.
13 Scott J F, Paz de Araujo C A. Ferroelectric memories [J]. Science,1989,246:1400.
14 Yang H, Wang Q, Wang H, et al. Oxygen concentration and its effect on the leakage current in BiFeO3 thin films [J].Appl Phys Lett,2010,96:012909.
15 Zhao Q X, Ma J K, Wei D Y, et al. Epitaxial SrRuO3/BiFeO3/SrRuO3 heterostructure sputtered at low temperature [J]. J Cryst Growth,2011,316:71.
16 Banerjee P, Franco A. Enhanced dielectric and magnetic properties in multiferroic Bi0.99Y0.01Fe0.99Ni0.01O3 ceramic [J]. Mater Lett,2016,184:17.
17 Wang Shuai, Li Kunfang, Fang Ting, et al. Research of room-temperature ferroelectric properties for the Pb doped BiFeO3 [J]. Mater Rev: Res,2014,28(12):237(in Chinese).
汪帅,李坤芳,方婷,等. Pb离子掺杂多铁性材料BiFeO3的铁电性研究 [J]. 材料导报:研究篇,2014,28(12):237.
18 Yu B F, et al. Enhanced multiferroic properties of the high-valence Pr doped thin film [J]. Appl Phys Lett,2008,93:182909.
19 Singh S K, Tomy C V, Era T, et al. Improved multiferroic properties in Sm-doped BiFeO3 thin films deposited using chemical solution deposition method [J]. J Appl Phys,2012,111:102801.
20 Wang H J, Wang S Y, Liu W F, et al. Study on abnormal phenomenon about enhanced electrical conductivity of Bi1-xBaxFeO3 ceramics [J]. Int J Mod Phys B,2014,28:1450009.
21 Hai X, et al. Exchange bias-like phenomenon in Lu doped La0.1Bi0.9FeO3 ceramics [J]. Int J Mod Phys B,2014,28:1350194.
22 Kawae T, Tsuda H, Naganuma H, et al. Composition dependence in BiFeO3 film capacitor with suppressed leakage current by Nd and Mn cosubstitution and their ferroelectric properties [J]. Jpn J Appl Phys,2008,47:7586.
23 Qi X D, Dho J, Tomov R, et al. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3 [J]. Appl Phys Lett,2005,86:062903.
24 Zheng Y J, Tan G Q, Xia A. Structure and multiferroic properties of multi-doped Bi1-xErxFe0.96Mn0.02Co0.02O3 thin films [J]. J Alloys Compd,2016,684:438.
25 Yang K G, Zhang Y L, Yang S H, et al. Structural, electrical, and magnetic properties of multiferroic thin films [J]. J Appl Phys,2010,107:124109.
26 Yu B F, Li M Y, Wang J, et al. Enhanced electrical properties in multiferroic BiFeO3 ceramics co-doped by La3+ and V5+ [J]. J Phys D,2008,41:185401.
27 Chakrabarti K, Das K, Sarkar B, et al. Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles [J]. Appl Phys Lett,2012,101:042401.
28 Singh K,et al. Reduced leakage current in La and Ni codoped BiFeO3 thin films [J]. Appl Phys Lett, 2007,91:112913.
29 Wu J G, Wang J, Xiao D Q, et al. Leakage mechanism of cation-modified BiFeO3 thin film [J]. AIP Adv,2011,1:022138.
30 Peng Z W, Liu B T, Zhu H J, et al. Effect of purple light on the ferroelectric and transport properties of epitaxial Mn-doped BiFeO3 film [J]. Phys Status Solidi A,2012,209:1451.
31 Wang K M, Li L, Su Y T, et al. Epitaxial BiFe0.95Mn0.05O3 film prepared by sol-gel method combined with rapid thermal annealing [J]. Funct Mater Lett,2014,7:1450041.
32 Tredgold R H. Space charge conduction in solids [M]. Amsterdam:Elsevier,1966.
33 Mott N F, Gurney R W. Electronic processes in ionic crystals[M]. Oxford: Clarendon,1940.
34 Lamb D R. Electric conduction mechanisms in thin insulating films[M].London: Methuen,1967.
35 Zubko P, Jung D J, Scott J F. Electrical characterization of PbZr0.4-Ti0.6O3 capacitors [J]. J Appl Phys,2006,100:114113.
36 Bai F M, Wang J L, Wuttig M, et al. Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization [J]. Appl Phys Lett,2005,86:032511.
37 Lee Y H, Wu J M, Lai C H. Influence of La doping in multiferroic properties of BiFeO3 thin films [J]. Appl Phys Lett,2006,88:042903.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[3] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[4] 恭飞, 吴张永, 朱启晨, 张莲芝, 郭翠霞, 王雪婷. NiFe2O4磁流体润滑性实验研究[J]. 材料导报, 2019, 33(z1): 126-131.
[5] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[6] 褚涛, 王五松, 王学杰, 张田才, 杨桂, 翟继卫. 高机械品质因数压电陶瓷材料的研究进展及应用[J]. 材料导报, 2019, 33(z1): 165-170.
[7] 孙亚兵, 包兆先, 霍子伟, 杨玲, 许积文, 周昌荣, 王华. (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究[J]. 材料导报, 2019, 33(z1): 171-177.
[8] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[9] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[10] 陈涛, 薛松柏, 孙子建, 翟培卓, 陈卫中, 郭佩佩. CO2气体保护焊短路过渡控制技术的研究现状与展望[J]. 材料导报, 2019, 33(9): 1431-1442.
[11] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[12] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[13] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[14] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[15] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed