Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22100218-6    https://doi.org/10.11896/cldb.22100218
  无机非金属及其复合材料 |
溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能
官春艳1,2, 郑启泾1,2, 万正环1,2, 杨锦瑜1,2,*
1 贵州师范大学化学与材料科学学院,贵阳 550001
2 贵州省功能材料化学重点实验室,贵阳 550001
Preparation and Performance of White Light Emitting Phosphors Gd4Ga2O9: Dy3+ by Sol-Gel Method
GUAN Chunyan1,2, ZHENG Qijing1,2, WAN Zhenghuan1,2, YANG Jinyu1,2,*
1 School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
2 Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
下载:  全 文 ( PDF ) ( 9681KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过溶胶-凝胶法制备了具有白光发射的Gd4Ga2O9: x%Dy3+荧光粉,利用 X 射线粉末衍射( XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、紫外-可见漫反射光谱(UV-Vis DRS)和荧光光谱等对产物的物相结构、形貌、组分和光学性能进行研究,并分析了Dy3+掺杂量对样品的影响。XRD结果表明,所制备的样品为Dy3+掺杂的Gd4Ga2O9单斜晶体和少量Ga2O3杂质相的混合物。紫外-可见漫反射光谱结果表明制备的Dy3+掺杂Gd4Ga2O9晶体是一种光学带隙为5.29 eV的直接带隙半导体。荧光检测结果表明Dy3+掺杂Gd4Ga2O9荧光粉可被属于Gd3+激发带的275 nm紫外光有效激发,并在490 nm和575 nm附近分别发射出属于Dy3+4F9/26H15/24F9/26H13/2跃迁的蓝色和黄色的强烈光,证实在Gd4Ga2O9: Dy3+样品中存在显著的由Gd3+到Dy3+的能量传递发光现象。同时,对其发光机制进行了讨论。样品的发光强度随着Dy3+掺杂量的变化而变化,同时影响着样品的发光颜色,Dy3+掺杂量为1.5% 和2% 时制备的荧光粉可在紫外光激发下分别发射出CIE色坐标为(0.336 2,0.351 2)和(0.338 1,0.352 3)、相关色温为5 340 K和5 263 K的白色光。研究结果表明Gd4Ga2O9: Dy3+是一种潜在的紫外光激发白光发射荧光材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
官春艳
郑启泾
万正环
杨锦瑜
关键词:  Gd4Ga2O9  Dy3+掺杂  白光发射  荧光性能  能量传递  直接带隙半导体    
Abstract: Gd4Ga2O9: x%Dy3+ phosphors with white light emission were prepared by sol-gel method. The phase structure, morphology, composition and optical properties of the samples were studied by X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and photoluminescence spectroscopy (PL). The XRD results show that the samples are mixtures of Dy3+ doped Gd4Ga2O9 monoclinic crystals and a slight impurity phase corresponding to Ga2O3. The results of UV-Vis DRS indicate that the Dy3+ doped Gd4Ga2O9 crystal is a direct semiconductor with an optical band gap of 5.29 eV. The PL results reveal that the Dy3+ doped Gd4Ga2O9 phosphors can be effectively excited by an excitation band of Gd3+ at 275 nm, and emit intense blue and yellow light at 490 nm and 575 nm, which attribute to the 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+, respectively, confirming that there is an obvious energy transfer luminescence phenomenon from Gd3+ to Dy3+ in Gd4Ga2O9: Dy3+ samples. The possible luminescence mechanism of Gd4Ga2O9: Dy3+ phosphors was briefly proposed. The luminous intensity of the sample varies with the doping amount of Dy3+, which also affects the luminous color of the prepared product. The Gd4Ga2O9: 1.5%Dy3+ and Gd4Ga2O9: 2.0%Dy3+ phosphors can emit white light with CIE color coordinates of (0.336 2, 0.351 2) and (0.338 1, 0.352 3) and correlated color temperatures of 5 340 K and 5 263 K under the excitation of ultraviolet light, respectively. The results imply that Gd4Ga2O9: Dy3+ is a potential white light emitting luminescence mate-rial excited by ultraviolet light.
Key words:  Gd4Ga2O9    Dy3+ doped    white light emitting    luminescence property    energy transfer    direct semiconductor
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  O611.4  
基金资助: 国家自然科学基金(213610007;51776046)
通讯作者:  *杨锦瑜,贵州师范大学化学与材料科学学院教授、硕士研究生导师。2010年于中南大学材料物理与化学专业博士毕业。目前主要从事无机发光材料方面的研究工作。已发表论文48篇。jinyuyang@gmail.com   
作者简介:  官春艳,2020年7月于海南师范大学获得理学学士学位。现为贵州师范大学化学与材料科学学院硕士研究生,在杨锦瑜教授的指导下进行研究。目前主要研究领域为稀土发光材料。
引用本文:    
官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
GUAN Chunyan, ZHENG Qijing, WAN Zhenghuan, YANG Jinyu. Preparation and Performance of White Light Emitting Phosphors Gd4Ga2O9: Dy3+ by Sol-Gel Method. Materials Reports, 2024, 38(8): 22100218-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100218  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22100218
1 Sayed Ali Khan, Noor Zamin Khan, Muhammad Sohail, et al. Journal of Materials Chemistry C, 2021, 9(38), 13041.
2 Wang Yanbin, Huang Xinyou. China Ceramics, 2021, 57(12), 1(in Chinese).
王雁斌, 黄新友. 中国陶瓷, 2021, 57(12), 1.
3 Huang Dayu, Dang Peipei, Lian Hongzhou, et al. Inorganic Chemistry, 2019, 58(22), 15507.
4 Hua Wei, Xiang Weidong, Dong Yongjun, et al. Journal of the Chinese Ceramic Society, 2011, 39(8), 1344(in Chinese).
华伟, 向卫东, 董永军, 等. 硅酸盐学报, 2011, 39(8), 1344.
5 Li Junhao, Liang Qiongyun, Yan Jing, et al. ACS Applied Materials & Interfaces, 2018, 10(21), 18066.
6 Cao Xun, Cao Cuicui, Sun Guangyao, et al. Journal of Inorganic Mate-rials, 2019, 34(11), 1145(in Chinese).
曹逊, 曹翠翠, 孙光耀, 等. 无机材料学报, 2019, 34(11), 1145.
7 Parvathala A, Suresh K N, Chowdam V P, et al. Journal of Molecular Structure, 2022, 1270, 133908.
8 Wu Xiao, Jiang Chuanxing, Liang Zijian, et al. Optik, 2020, 216, 164877.
9 Wen Huixia, Fan Bin, Li Hongxi, et al. Materials Reports, 2020, 34(14), 14023(in Chinese).
温慧霞, 樊彬, 李红喜, 等. 材料导报, 2020, 34(14), 14023.
10 Zhuo Mingpeng, YuYanjun, Ding Lingyi, et al. Materials Reports, 2023, 37(3), 50(in Chinese).
卓明鹏, 俞燕君, 丁灵奕, 等. 材料导报, 2023, 37(3), 50.
11 Wang Qiang, Mu Zhongfei, Yang Lurong, et al. Physica B: Condensed Matter, 2018, 5, 258.
12 Wang Zhenbin, Xu Jiao, Ju Zhenghua, et al. Journal of Alloys and Compounds, 2021, 856, 157230.
13 Ankoji P, Suresh K N, Chandra B N K, et al. Applied Physics A, 2021, 127(7), 552.
14 Yang Xiaoyu, Tang Boming, Cao Xuejuan, et al. Materials Reports, 2023, 37(12), 52(in Chinese).
杨晓宇, 唐伯明, 曹雪娟, 等. 材料导报, 2023, 37(12), 52.
15 Chemingui S, Ferhi M, Horchani-Naifer K, et al. Journal of Luminescence, 2015, 166, 82.
16 Wang Tao, Hu Yihua, Chen Li, et al. Journal of Luminescence, 2017, 181(2), 189.
17 Yang Xuening, Li Qihu, Li Xiao, et al. Optical Materials, 2020, 107, 110133.
18 Dewangan P, Bisen D P, Brahme N, et al. Journal of Alloys and Compounds, 2020, 816, 152590.
19 Gupta I, Singh D, Singh S, et al. Journal of Molecular Structure, 2023, 1272, 134199.
20 Kong Li, Liu Yingying, Dong Langping, et al. Dalton Transactions, 2020, 49(6), 1947.
21 Kuang Meng, Li Junhao, Zhang Jinjun, et al. New Journal of Chemistry, 2021, 45(45), 21066.
22 Davis E A, Mott N F. The Philosophical Magazine: a Journal of Theoretical Experimental and Applied Physics, 1970, 22(179), 0903.
23 Zhang Ling, Rao Qiliang, Guo Hairui, et al. Rare Metals and Cemented Carbides, 2020, 48(5), 41(in Chinese).
张玲, 饶啟亮, 郭海瑞, 等. 稀有金属与硬质合金, 2020, 48(5), 41.
24 Marina Boyer, Alberto José Fernandez Carrion, Sandra Ory, et al. Journal of Materials Chemistry C, 2016, 4(15), 3238.
25 Blasse G. Physics Letters A, 1968, 28(6), 444.
26 Van Uitert L G. Journal of the Electrochemical Society, 1967, 114(10), 1048.
27 Cao Renping, Su Lei, Cheng Xinyu, et al. Applied Physics A, 2019, 125(4), 233.
28 Muhammad Tahir Abbas, Sayed Ali Khan, Mao Jiashan, et al. Journal of Thermal Analysis and Calorimetry, 2022, 147(21), 11769.
29 Sreedhar V B, Ramachari D, Jayasankar C K. Physica B: Condensed Matter, 2013, 408, 158.
30 Li Jiguang, Li Jinkai, Zhu Qi, et al. RSC Advances, 2015, 5(73), 59686.
31 Priyanka Sehrawat, Avni Khatkar, Sushma Devi, et al. Chemical Physics Letters, 2019, 737, 136.
32 Kapil D, Anupam S, Govind B N, et al. Optik, 2019, 194, 163051.
[1] 郭丁萌, 李晓玉, 孙天懿, 连海兰. 热敏型碳点作为温度传感材料的研究进展[J]. 材料导报, 2024, 38(18): 23040116-11.
[2] 高华兴, 张红旗, 李璇. 准二维钙钛矿中结晶调控与低阈值微纳激光器[J]. 材料导报, 2024, 38(12): 22110309-5.
[3] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[4] 李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
[5] 侯芹芹, 江元汝, 甘俊羊, 赵亚娟, 赵彬, 韩彤. 溶剂热法合成La1.9Y0.06Mo2O9∶Eu3+Sm3+荧光粉及其能量传递机理[J]. 材料导报, 2019, 33(12): 1939-1944.
[6] 任强, 魏腾跃, 武秀兰, 霍哲哲, 王保兴. Eu3+对Na3Gd2(BO3)3∶Tb3+发光性能的影响及其能量传递[J]. 《材料导报》期刊社, 2017, 31(6): 7-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed