Preparation and Performance of White Light Emitting Phosphors Gd4Ga2O9: Dy3+ by Sol-Gel Method
GUAN Chunyan1,2, ZHENG Qijing1,2, WAN Zhenghuan1,2, YANG Jinyu1,2,*
1 School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China 2 Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
Abstract: Gd4Ga2O9: x%Dy3+ phosphors with white light emission were prepared by sol-gel method. The phase structure, morphology, composition and optical properties of the samples were studied by X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and photoluminescence spectroscopy (PL). The XRD results show that the samples are mixtures of Dy3+ doped Gd4Ga2O9 monoclinic crystals and a slight impurity phase corresponding to Ga2O3. The results of UV-Vis DRS indicate that the Dy3+ doped Gd4Ga2O9 crystal is a direct semiconductor with an optical band gap of 5.29 eV. The PL results reveal that the Dy3+ doped Gd4Ga2O9 phosphors can be effectively excited by an excitation band of Gd3+ at 275 nm, and emit intense blue and yellow light at 490 nm and 575 nm, which attribute to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions of Dy3+, respectively, confirming that there is an obvious energy transfer luminescence phenomenon from Gd3+ to Dy3+ in Gd4Ga2O9: Dy3+ samples. The possible luminescence mechanism of Gd4Ga2O9: Dy3+ phosphors was briefly proposed. The luminous intensity of the sample varies with the doping amount of Dy3+, which also affects the luminous color of the prepared product. The Gd4Ga2O9: 1.5%Dy3+ and Gd4Ga2O9: 2.0%Dy3+ phosphors can emit white light with CIE color coordinates of (0.336 2, 0.351 2) and (0.338 1, 0.352 3) and correlated color temperatures of 5 340 K and 5 263 K under the excitation of ultraviolet light, respectively. The results imply that Gd4Ga2O9: Dy3+ is a potential white light emitting luminescence mate-rial excited by ultraviolet light.
1 Sayed Ali Khan, Noor Zamin Khan, Muhammad Sohail, et al. Journal of Materials Chemistry C, 2021, 9(38), 13041. 2 Wang Yanbin, Huang Xinyou. China Ceramics, 2021, 57(12), 1(in Chinese). 王雁斌, 黄新友. 中国陶瓷, 2021, 57(12), 1. 3 Huang Dayu, Dang Peipei, Lian Hongzhou, et al. Inorganic Chemistry, 2019, 58(22), 15507. 4 Hua Wei, Xiang Weidong, Dong Yongjun, et al. Journal of the Chinese Ceramic Society, 2011, 39(8), 1344(in Chinese). 华伟, 向卫东, 董永军, 等. 硅酸盐学报, 2011, 39(8), 1344. 5 Li Junhao, Liang Qiongyun, Yan Jing, et al. ACS Applied Materials & Interfaces, 2018, 10(21), 18066. 6 Cao Xun, Cao Cuicui, Sun Guangyao, et al. Journal of Inorganic Mate-rials, 2019, 34(11), 1145(in Chinese). 曹逊, 曹翠翠, 孙光耀, 等. 无机材料学报, 2019, 34(11), 1145. 7 Parvathala A, Suresh K N, Chowdam V P, et al. Journal of Molecular Structure, 2022, 1270, 133908. 8 Wu Xiao, Jiang Chuanxing, Liang Zijian, et al. Optik, 2020, 216, 164877. 9 Wen Huixia, Fan Bin, Li Hongxi, et al. Materials Reports, 2020, 34(14), 14023(in Chinese). 温慧霞, 樊彬, 李红喜, 等. 材料导报, 2020, 34(14), 14023. 10 Zhuo Mingpeng, YuYanjun, Ding Lingyi, et al. Materials Reports, 2023, 37(3), 50(in Chinese). 卓明鹏, 俞燕君, 丁灵奕, 等. 材料导报, 2023, 37(3), 50. 11 Wang Qiang, Mu Zhongfei, Yang Lurong, et al. Physica B: Condensed Matter, 2018, 5, 258. 12 Wang Zhenbin, Xu Jiao, Ju Zhenghua, et al. Journal of Alloys and Compounds, 2021, 856, 157230. 13 Ankoji P, Suresh K N, Chandra B N K, et al. Applied Physics A, 2021, 127(7), 552. 14 Yang Xiaoyu, Tang Boming, Cao Xuejuan, et al. Materials Reports, 2023, 37(12), 52(in Chinese). 杨晓宇, 唐伯明, 曹雪娟, 等. 材料导报, 2023, 37(12), 52. 15 Chemingui S, Ferhi M, Horchani-Naifer K, et al. Journal of Luminescence, 2015, 166, 82. 16 Wang Tao, Hu Yihua, Chen Li, et al. Journal of Luminescence, 2017, 181(2), 189. 17 Yang Xuening, Li Qihu, Li Xiao, et al. Optical Materials, 2020, 107, 110133. 18 Dewangan P, Bisen D P, Brahme N, et al. Journal of Alloys and Compounds, 2020, 816, 152590. 19 Gupta I, Singh D, Singh S, et al. Journal of Molecular Structure, 2023, 1272, 134199. 20 Kong Li, Liu Yingying, Dong Langping, et al. Dalton Transactions, 2020, 49(6), 1947. 21 Kuang Meng, Li Junhao, Zhang Jinjun, et al. New Journal of Chemistry, 2021, 45(45), 21066. 22 Davis E A, Mott N F. The Philosophical Magazine: a Journal of Theoretical Experimental and Applied Physics, 1970, 22(179), 0903. 23 Zhang Ling, Rao Qiliang, Guo Hairui, et al. Rare Metals and Cemented Carbides, 2020, 48(5), 41(in Chinese). 张玲, 饶啟亮, 郭海瑞, 等. 稀有金属与硬质合金, 2020, 48(5), 41. 24 Marina Boyer, Alberto José Fernandez Carrion, Sandra Ory, et al. Journal of Materials Chemistry C, 2016, 4(15), 3238. 25 Blasse G. Physics Letters A, 1968, 28(6), 444. 26 Van Uitert L G. Journal of the Electrochemical Society, 1967, 114(10), 1048. 27 Cao Renping, Su Lei, Cheng Xinyu, et al. Applied Physics A, 2019, 125(4), 233. 28 Muhammad Tahir Abbas, Sayed Ali Khan, Mao Jiashan, et al. Journal of Thermal Analysis and Calorimetry, 2022, 147(21), 11769. 29 Sreedhar V B, Ramachari D, Jayasankar C K. Physica B: Condensed Matter, 2013, 408, 158. 30 Li Jiguang, Li Jinkai, Zhu Qi, et al. RSC Advances, 2015, 5(73), 59686. 31 Priyanka Sehrawat, Avni Khatkar, Sushma Devi, et al. Chemical Physics Letters, 2019, 737, 136. 32 Kapil D, Anupam S, Govind B N, et al. Optik, 2019, 194, 163051.