Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15069-15074    https://doi.org/10.11896/cldb.20030004
  无机非金属及其复合材料 |
分离膜在膜液体除湿中的应用进展
牛润萍, 庚立志, 范莹莹
北京建筑大学,北京市建筑能源高效综合利用工程技术研究中心, 北京 100044
Application Progress of Separation Membrane on Membrane Liquid Desiccant Dehumidification
NIU Runping, GENG Lizhi, FAN Yingying
Beijing Engineering Research Center of Sustainable Energy and Buildings, Beijing University of Civil Engineering and Architecture,Beijing 100044, China
下载:  全 文 ( PDF ) ( 2547KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于人们对室内舒适性的要求不断提高,空气除湿技术得到了迅速发展,膜液体除湿因解决了传统液体除湿夹带液滴的问题,近年来得到了广泛的研究与应用。该技术耦合了膜分离技术的选择性与液体除湿的高吸收性,通过选择性透过膜将高湿气体与液体干燥剂隔离开,水蒸气分子在膜两侧水蒸气分压力差的驱动下透过分离膜完成气体的除湿过程。目前,人们对膜液体除湿器中分离膜的膜材料及膜组件进行了大量的研究工作。
膜液体除湿器中的膜为气液分离膜,其按材质可分为有机膜、无机膜以及有机-无机复合膜,目前应用在除湿器中的多为有机高分子聚合物膜;而按形态结构可分为微孔膜、致密膜以及复合膜。微孔膜膜孔的润湿现象限制了其应用,因此研究人员对其进行了疏水改性研究。而致密膜则完全避免了这个问题,目前研究者提出了一种吸收器单元思想,为致密膜的下一步研究提供了思路。复合膜性价比比前两种膜结构更高,因此近年来研究人员开发了多种复合膜以用于空气除湿。此外,除湿分离膜可被制成平板式或中空纤维膜式,并分别形成平板膜组件与中空纤维膜组件,为了揭示膜组件内的热湿传递规律,研究人员对两种膜组件内的流体流动方式、共轭传热传质机理、组件结构进行了大量研究,这对膜液体除湿技术的推广及发展具有重要的意义。
本文概述了分离膜在膜液体除湿器中的最新研究进展,首先介绍了膜液体除湿器的工作原理,然后归纳总结了分离膜材料在除湿器中的分类及应用,重点介绍了不同形态结构的除湿膜材料,对其性能影响因素及研究进展展开了叙述,接着结合国内外的研究对除湿器中不同分离膜组件的传热传质研究及结构特点进行了概述,最后就分离膜在膜液体除湿技术中的未来研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛润萍
庚立志
范莹莹
关键词:  膜液体除湿  分离膜材料  平行板式膜组件  中空纤维膜组件    
Abstract: Due to the continuous improvement of people's requirements for indoor comfort, dehumidification technology has developed rapidly. Membrane-based liquid desiccant air dehumidification technology solves the problem of traditional liquid dehumidification with droplets, and has been widely used in recent years. The technology is coupled with the selectivity of membrane separation technology and the high absorption of liquid dehumidification. The high humidity gas is separated from the liquid desiccant through the selective membrane, and the water vapor molecules are driven by the differential pressure of water vapor on both sides of the membrane to complete the gas dehumidification process through the membrane. At present, researchers have done a lot of research works on the membrane materials and the configuration of membrane components in the membrane liquid dehumidifier.
The membrane in the membrane-based liquid desiccant air dehumidification is a gas-liquid separation membrane, which can be divided into organic membrane, inorganic membrane, and organic-inorganic composite membrane according to the material. At present, the organic polymer membrane material is mostly used in the dehumidifier; and morphological structure can be divided into microporous film, dense film and composite film. The application of microporous membranes is restricted by the wetting phenomenon of membrane pores, and researchers have carried out hydrophobic modification studies. The dense film completely avoids the problem, an researcher has proposed an idea of an absorber unit, which provides ideas for the next research of the dense film. Compared with the previous two membrane structures, the composite membrane is more cost-effective. In recent years, a variety of composite membranes have been developed for gas dehumidification. The dehumidification separation membrane can be made into a flat type or a hollow fiber membrane type and formed into a flat membrane module and a hollow fiber membrane module. In order to reveal the heat and moisture transfer law in the membrane module, researchers have studied the fluid flow modes in the two membrane modules.A lot of research has been done on the mechanism of conjugate heat and mass transfer and the structure of the module, which is of great significance to the promotion and development of membrane-based liquid desiccant air dehumidification.
The paper summarizes the latest research progress of separation membrane in membrane-based liquid desiccant air dehumidification, first introduces the working principle of membrane liquid dehumidifier, then summarizes the application of separation membrane materials in dehumidifier, mainly introduces the dehumidifier materials with different forms and structures, describes their characteristics and research progress, and then combines the research at home and abroad to different separation membrane groups in dehumidifier. The structure characteristics and the deve-lopment of heat and mass transfer of the components are summarized. Finally, the future research direction of the separation membrane in the membrane-based liquid desiccant air dehumidification technology is discussed.
Key words:  membrane liquid desiccant dehumidification    separation membrane materials    parallel-plates membrane module    hollow fiber membrane module
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TB39  
  TU834.9  
基金资助: 国家自然科学基金(51106007);促进高校内函发展定额项目-建大杰青(21082718003)
通讯作者:  niurunping@bucea.edu.cn   
作者简介:  牛润萍,北京建筑大学,副教授,硕士研究生导师。主要从事膜液体除湿和相变材料储能研究。
庚立志,2018年6月毕业于河北科技大学,获得学士学位。现为北京建筑大学硕士研究生,主要从事膜液体除湿和除湿膜材料研究。
范莹莹,2018年6月毕业于河北科技大学,获得学士学位。现为北京建筑大学硕士研究生,主要从事膜液体除湿和除湿膜材料研究。
引用本文:    
牛润萍, 庚立志, 范莹莹. 分离膜在膜液体除湿中的应用进展[J]. 材料导报, 2020, 34(15): 15069-15074.
NIU Runping, GENG Lizhi, FAN Yingying. Application Progress of Separation Membrane on Membrane Liquid Desiccant Dehumidification. Materials Reports, 2020, 34(15): 15069-15074.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030004  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15069
1 Shan X, Lu W Z, Hui S. Energy Procedia, 2019, 158,3821.2 Ashrae S. Ventilation for Acceptable Indoor Air Quality, 2016, 62,1.3 Qu M, Abdelaziz O, Gao Z, et al. Renewable and Sustainable Energy Reviews, 2018, 82,4060.4 Niu R, Kuang D, Wang S, et al. Journal of Building Engineering, 2020, 27,1009.5 Elsarrag E. Solar Energy, 2008, 82(7), 663.6 Fu H X, Liu X H. Building and Environment, 2017, 116,158.7 Jain S, Bansal P. International Journal of Refrigeration 2007,30,861. 8 Huang S M, Zhang L Z. Renewable and Sustainable Energy Reviews, 2013, 28,425.9 Liu X, Qu M, Liu X, et al. Renewable and Sustainable Energy Reviews, 2019, 110,444.10 Isetti C, Nannei E, Orlandini B. International Journal of Ambient Energy, 2013, 34(4), 181.11 Chen X, Riffat S, Bai H, et al. Energy and Built Environment, 2020, 1(1), 106.12 Bergero S, Chiari A. Applied Thermal Engineering, 2001, 21(11), 1119.13 Bergero S, Chiari A. Energy, 2011, 36(8), 5261.14 Zhang L Z. International Journal of Heat and Mass Transfer, 2012, 55(21), 5861.15 Isetti C, Nannei E, Magrini A. Energy & Buildings, 1997, 25(3),185.16 Fakharnezhad A, Keshavarz P. Journal of Industrial and Engineering Chemistry, 2016, 34,390.17 Yang M,Huang S M,Yang S. Energy Build, 2014, 80,640. 18 Pantelic J, Teitelbaum E, Bozlar M, et al. Energy and Buildings, 2018, 160,34.19 Pantelic J, Meggers F, Teitelbaum E, et al. Energy Procedia, 2017, 122,1117.20 Dijkink B H, Tomassen M M, Willemsen J H A, et al. Postharvest Biology and Technology, 2004, 32(3), 311.21 Lin J, Huang S M, Wang R, et al. Energy Conversion and Management, 2018, 156,440.22 Liu H M. Preparation and hydrophobic modification of polyvinylidene fluoride. Master's Thesis, South China University of Technology, China, 2011 (in Chinese).刘红梅. 聚偏氟乙烯膜的制备与疏水改性.硕士学位论文, 华南理工大学, 2011.23 Kneifel K, Nowak S, Albrecht W, et al. Journal of Membrane Science, 2006, 276(1), 241.24 Zhang L Z, Huang S M. International Journal of Heat and Mass Transfer, 2011, 54(5), 1055.25 Zhao M, Zhang H F, Zhang Y S, et al. Materials Review A:Review Papers, 2017, 31(2),116 (in Chinese).赵曼, 张慧峰, 张雨山, 等. 材料导报:综述篇, 2017, 31(2), 116.26 Su Q W, Lu H, Zhang J Y, et al. Journal of Membrane Science, 2019, 582,367.27 Li G P, Qi R H, Zhang L Z. Chemical Engineering Science, 2019, 206,164.28 Huang S M, Zhang L Z, Tang K, et al. International Journal of Heat and Mass Transfer, 2012, 55(9),2571.29 Zhang L Z, Liang C H, Pei L X. Journal of Membrane Science, 2008, 325(2), 672.30 Huang S M, Zhang L Z, Yang M. Journal of Membrane Science, 2013, 437(437), 82.31 Das R S, Jain S. Applied Energy, 2015, 141,1.32 Lin J, Huang S M, Wang R, et al. Applied Energy, 2019, 250,786.33 Larson M, Besant R W, et al. Journal of Membrane Science, 2007, 302(1), 136. 34 Chen S. Study on the fluid flow and heat transfer in abnormal membrane channels used for air humiditycontrol.Master's Thesis, South China University of Technology, China, 2015(in Chinese).陈升. 用于空气湿度控制的异形膜流道内流体流动与传热研究. 硕士学位论文, 华南理工大学, 2015.35 Huang S M, Yang M, Yang X. Applied Thermal Engineering, 2014, 63(1),323.36 Abdel S, Besant R W, Simonson C. J. International Journal of Heat and Mass Transfer, 2016, (92),312.37 Annadurai G, Tiwari S, Maiya M P. International Journal of Low-Carbon Technologies, 2018, 13(3), 240.38 Ni T.The influence of CO2 gas on hydrophobic PVDF hollow fiber membrane wetting by ethanolaming solution. Master's Thesis, South China University of Technology, China, 2018(in Chinese).倪婷. CO2气体对醇胺溶液浸润疏水性PVDF中空纤维膜影响的研究.硕士学位论文,北京化工大学, 2018.39 Turken T, Sengur-Tasdemir R, Ates-Genceli E, et al. Journal of Water Process Engineering, 2019, 32,100938.40 Bergero S, Chiari A. Energy and Buildings, 2010, 42(11), 1976.41 Yin S Y,Zhang N. Journal of Refrigeration. 2017, 38(3),96 (in Chinese).殷少有, 张宁.制冷学报, 2017, 38(3), 96.42 Zhao B, Wang L Y, Chung T S. Separation and Purification Technology, 2019, 220,136.43 Huang S M, Zhang L Z, Pei L X. Indoor & Built Environment, 2013, 22,559. 44 Li Z X, Zhang L Z. International Journal of Heat and Mass Transfer, 2014, 74,421.45 Zhang L Z, Huang S M, Zhang W B. Heat and Mass Transfer, 2013,64,162. 46 Huang S M, Yang M. Journal of Membrane Science, 2014, 449,184.47 Zhong W F,Yang M L,Zuo Y Z, et al.Chemical Industry and Engineering Progress,2013, 32(5), 971 (in Chinese).钟文锋, 杨敏林, 左远志, 等. 化工进展, 2013, 32(5), 971.48 Huang S M, Yang M. Applied Energy, 2013, 112,75.49 Huang S M, Yang M, Yang Y, et al. International Journal of Thermal Sciences, 2013, 73,28.50 Huang S M, Yang M, Qin F, et al. International Journal of Heat and Mass Transfer, 2016, 102,1044.51 Li S T.Investigation of semi-random semi-regular hollow fiber membrane-based humidification module's humidification performance. Master's Thesis, South China University of Technology, China, 2017(in Chinese).李斯陶. 半随机半规整新型中空纤维膜组件加湿性能研究.硕士学位论文,华南理工大学, 2017.52 Zhao Y Y. Study on heat and mass transfer performance of modular contactor for dehumidification and humidification. Master's Thesis, South China University of Technology, China, 2018(in Chinese).赵媛媛. 单元组合式除湿加湿组件传热传质性能研究. 硕士学位论文,华南理工大学, 2018.
[1] 王永宝, 原元, 赵人达, 张晋杰. 赤泥地聚物混凝土力学性能研究现状及发展趋势[J]. 材料导报, 2020, 34(15): 15102-15109.
[2] 王兰馨, 姚山, 温斌. 第一性原理计算Fe含量对高熵合金AlFexTiCrZnCu力学性能的影响[J]. 材料导报, 2019, 33(Z2): 356-359.
[3] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[4] 张大旺,王栋民. 地质聚合物混凝土研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1519-1527.
[5] 马凤森,喻炎,章捷,陈海波. 生物材料细胞毒性评价研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 76-85.
[6] 何雄, 孙志刚. 非磁性半导体磁阻效应物理模型研究*[J]. 《材料导报》期刊社, 2017, 31(17): 6-11.
[7] 郭凯, 于海龙, 唐恩凌, 王猛, 贺丽萍, 刘淑华. 钛表面等离子体电解氧化制备的Ca-P-Si生物活性陶瓷膜的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(14): 61-66.
[8] 赵嘉兰, 王悦敏, 牛亚伟, 董晓婷, 秦凌浩. 内源性外泌体作为药物递释系统的研究进展*[J]. CLDB, 2017, 31(13): 160-165.
[9] 纪志永, 黄智辉, 袁俊生, 李非, 周俊奇. 基于离子交换机理的尖晶石型LiMn2O4脱/嵌锂模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 131-135.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed