Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 6-11    https://doi.org/10.11896/j.issn.1005-023X.2017.017.002
  材料综述 |
非磁性半导体磁阻效应物理模型研究*
何雄, 孙志刚
武汉理工大学材料复合新技术国家重点实验室,武汉 430070
Physical Models of Magnetoresistance Effects in Non-magnetic Semiconductors
HE Xiong, SUN Zhigang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 1644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非磁性半导体的磁阻效应一直以来受到了科研工作者的广泛关注,具有重大的研究意义和价值,在磁性传感器、高密度存储等方面有着潜在应用前景。主要综述了几种典型的非磁性半导体磁阻效应物理模型,即空间电荷效应模型、纳米非均匀性模型、二极管辅助几何增强模型、载流子复合模型和雪崩电离模型。最后,对非磁性半导体的雪崩电离基磁阻效应进行了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何雄
孙志刚
关键词:  非磁性半导体  磁阻效应  物理模型  雪崩电离  巨磁阻    
Abstract: Magnetoresistance (MR) effects in non-magnetic semiconductors attract lots of attentions because of its great research significance and potential applications in magnetic sensors, high density storage and so forth. In this paper, several typical physical models such as space-charge effect model, nano-inhomogeneous model, diode-assisted geometry enhanced model, carriers recombination model, and avalanche breakdown model are summarized. Finally, the MR effects based on avalanche breakdown of non-magnetic semiconductors are analyzed and forecasted.
Key words:  non-magnetic semiconductors    magnetoresistance effects    physical models    avalanche breakdown    giant magnetoresistance
出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  O472  
  TB39  
基金资助: 国家自然科学基金(11574243;11174231)
通讯作者:  孙志刚:通讯作者,男,教授,博士研究生导师,主要从事磁学的研究 E-mail:sun_zg@whut.edu.cn   
作者简介:  何雄:男,1991年生,博士研究生,主要从事磁阻效应的研究 E-mail:he_xiong@whut.edu.cn
引用本文:    
何雄, 孙志刚. 非磁性半导体磁阻效应物理模型研究*[J]. 《材料导报》期刊社, 2017, 31(17): 6-11.
HE Xiong, SUN Zhigang. Physical Models of Magnetoresistance Effects in Non-magnetic Semiconductors. Materials Reports, 2017, 31(17): 6-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.002  或          https://www.mater-rep.com/CN/Y2017/V31/I17/6
1 Daughton J M. GMR applications[J]. J Magn Magn Mater,1999,192:334
2 Parkin S S, Kaiser C, Panchula A, et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers[J]. Nat Mater,2004,3:862.
3 Qian Zheng. Research and application of giant magneto-resistance effect[J]. Chin J Sensors Actuators,2003(4):516(in Chinese).
钱政. 巨磁电阻效应的研究与应用[J]. 传感技术学报,2003(4):516.
4 Sun Z G, et al. Magnetic-field-controllable avalanche breakdown and giant magnetoresistive effects in Gold/semi-insulating-GaAs Schottky diode[J]. Appl Phys Lett,2004,85(23):5643.
5 Delmo M P, Yamamoto S, Kasai S, et al. Large positive magnetoresistive effect in silicon induced by the space-charge effect[J]. Nature,2009,457:1112.
6 Chen J J, Piao H G, Luo Z C, et al. Enhanced linear magnetoresis-tance of germanium at room temperature due to surface imperfection[J]. Appl Phys Lett,2015,106(17):173503.
7 Yang D Z, Wang T, Sui W B, et al. Temperature-dependent asymmetry of anisotropic magnetoresistance in silicon p-n junctions[J]. Scientific Rep,2015,5:11096.
8 Luo Z C, Zhang X Z. Resistance transition assisted geometry enhanced magnetoresistance in semiconductors[J]. J Appl Phys,2015,117(17):17A302.
9 Wang T, Si M S, Yang D Z, et al. Angular dependence of the magnetoresistance effect in a silicon based p-n junction device[J]. Nanoscale,2014,6:3978.
10 Delmo M P, Shikoh E, Shinjo T, et al. Bipolar-driven large linear magnetoresistance in silicon at low magnetic fields[J]. Phys Rev B,2013,87(24):245301.
11 Schoonus J J H M, Haazen P P J, Swagten H J M, et al. Unravelling the mechanism of large room-temperature magnetoresistance in silicon[J]. J Phys D: Appl Phys,2009,42(18): 185011.
12 Yang Hui. The mechanism research of electric and magnetoresis-tance effect for silicon-based semiconuctor[D]. Wuhan: Wuhan University of Tecnology,2013(in Chinese).
杨辉. 硅基半导体电输运机制及磁阻效应研究[D].武汉: 武汉理工大学,2013.
13 He X, Sun Z G, Pang Y Y, et al. In-situ detection of local avalanche breakdown and large magnetoresistance in Ag/SiO2/p-Si:B/SiO2/Ag device[J]. J Appl Phys,2017,121(11):114501.
14 Chen J J, Piao H G, Luo Z C, et al. Programmable logic based on large magnetoresistance of germanium[J]. Chin Phys Lett,2016,33(4):047501.
15 Tzeng S Y T, Tzeng Y H. Two-level model and magnetic field effects on the hysteresis in n-GaAs[J]. Phys Rev B,2004,70(8):085208.
16 Ahmad F R. Magnetoresistance in p-type cadmium telluride doped with sodium[J]. Appl Phys Lett,2015,106(1):012109.
17 Lee J, Joo S, Kim T, et al. An electrical switching device controlled by a magnetic field-dependent impact ionization process[J]. Appl Phys Lett,2010,97(25):253505.
18 Chen J J, Zhang X Z, Luo Z C, et al. Large positive magnetoresis-tance in germanium[J]. J Appl Phys,2014,116(11):114511.
19 Wang T, Yang D Z, Si M S, et al. Magnetoresistance amplification effect in silicon transistor device[J]. Adv Electron Mater, DOI:10.10021aelm.201600174.
20 Yang D Z, Wang F C, Ren Y, et al. A large magnetoresistance effect in p-n junction devices by the space-charge effect[J]. Adv Funct Mater,2013,23(23):2918.
21 Porter N A, Marrows C H. Linear magnetoresistance in n-type silicon due to doping density fluctuations[J]. Scientific Rep,2012,2:565.
22 Chen J J, Zhang X Z, Piao H G, et al. Enhanced low field magnetoresistance in germanium and silicon-diode combined device at room temperature[J]. Appl Phys Lett,2014,105(19):193508.
23 Joo S, Kim T, Shin S H, et al. Magnetic-field-controlled reconfigurable semiconductor logic[J]. Nature,2013,494:72.
24 Mathur H, Baranger H U. Random Berry phase magnetoresistance as a probe of interface roughness in Si MOSFET’s[J]. Phys Rev B,2001,64:235325.
25 Velichko A V, Makarovsky O, Mori N, et al. Impact ionization and large room-temperature magnetoresistance in micron-sized high-mo-bility InAs channels[J]. Phys Rev B,2014,90(8):085309.
26 Schoonus J J H M, Bloom F L, Wagemans W, et al. Extremely large magnetoresistance in boron-doped silicon[J]. Phys Rev Lett,2008,100(12):127202.
27 Parish M M, Littlewood P B. Non-saturating magnetoresistance in heavily disordered semiconductors[J]. Nature,2003,426:162.
28 Husmann A, Betts J B, Boebinger G S, et al. Megagauss sensors[J]. Nature,2002,417:421.
29 Herring C. Effect of random inhomogeneities on electrical and galvanomagnetic measurements[J]. J Appl Phys,1960,31(11):1939.
30 Wang J M, Zhang X Z, Wan C H, et al. Diode assisted giant positive magnetoresistance in n-type GaAs at room temperature[J]. J Appl Phys,2013,114(3):034501.
31 Liu Yuan, Tan Xinyu, Piao Hongguang. Influence of interface silicon dioxide layer on diode assisted magnetoresistance in silicon[J]. J China Three Gorges University:Nat Sci,2014, 36(2):98(in Chinese).
刘源, 谭新玉, 朴红光. 界面二氧化硅层对二极管辅助硅基磁电阻效应影响的研究[J]. 三峡大学学报:自然科学版,2014,36(2):98.
32 Ferry D K, Heinrich H. Effect of magnetic fields on impact ionization rates and instabilities in InSb[J]. Phys Rev,1968,169(3):670.
33 Aoki K, Kondo T, Watanabe T. Cross-over instability and chaos of hysteretic I-V curve during impurity avalanche breakdown in n-GaAs under longitudinal magnetic field[J]. Solid State Commun,1991,77(1):91.
34 Lee F S, Cheng Y C. Magnetic-field effects on the hysteresis in se-miconductors with an S-shaped negative differential conductivity[J]. Phys Rev B,1997,56(11):6412.
35 Akinaga H. Magnetoresistive switch effect in metal/semiconductor hybrid granular films: Extremely huge magnetoresistance effect at room temperature[J]. Semicond Sci Technol,2002,17(4):322.
36 Yokoyama M, Ogawa T, Nazmul A M, et al. Large magnetoresis-tance (>600%) of a GaAs:MnAs granular thin film at room tempe-rature[J]. J Appl Phys,2006,99(8):08D502.
37 Lutsev L V, Stognij A I, Novitskii N N. Giant magnetoresistance in semiconductor/granular film heterostructures with cobalt nanoparticles[J]. Phys Rev B,2009,80(18):184423.
38 Li S C, Luo W, Gu J J, et al. Large, tunable magnetoresistance in nonmagnetic Ⅲ-Ⅴ nanowires[J]. Nano Lett,2015,15(12):8026.
[1] 余宸, 田威, 王杰, 高晋峰. 砂型3D打印材料在岩体物理模型试验中的应用研究及展望[J]. 材料导报, 2024, 38(12): 22120133-9.
[2] 于涵, 何雄, 张孔斌, 何斌, 罗丰, 孙志刚. 锗基半导体器件的界面磁阻效应和体磁阻效应[J]. 材料导报, 2021, 35(2): 2069-2073.
[3] 门阔, 赵鸿滨, 魏峰, 魏千惠. 磁性传感材料与器件研究进展[J]. 材料导报, 2021, 35(15): 15056-15064.
[4] 周立玉, 李秀兰, 王宣, 曾洪亮, 余杰. AZ31镁合金固态扩渗La2O3+Zn渗层组织演化过程研究[J]. 材料导报, 2020, 34(18): 18093-18097.
[5] 曹明星, 马立文, 王志宏. 碲属线性巨磁阻材料研究进展[J]. 材料导报, 2020, 34(13): 13131-13138.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed