Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22072-22078    https://doi.org/10.11896/cldb.20100001
  无机非金属及其复合材料 |
机制砂表面改性技术研究与应用
高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊
中建西部建设建材科学研究院有限公司,成都 610052
Research and Application of Surface Modification Technology of Manufactured Sand
GAO Yuxin, LIU Ming, ZENG Chao, WANG Futao, WANG Peng, YE Zi, ZHANG Lei
China West Construction Academy of Building Materials Co., Ltd., Chengdu 610052, China
下载:  全 文 ( PDF ) ( 3131KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 机制砂含泥引起的混凝土性能劣化问题是混凝土行业亟待解决的难题。采用硅基防水剂、黏土防膨剂作为双组分表面改性剂对机制砂进行表面预处理,降低机制砂中泥粉含量对混凝土工作性能的负面影响。探究改性剂的种类和用量对机制砂吸水率与亚甲蓝值(MB值)的影响以及与减水剂吸附量、黏土层间距之间的关系,还高效研究表面改性处理工艺对胶砂流变行为以及混凝土工作性能、力学性能和耐久性能的影响。研究结果表明:双组分改性剂中防水剂与防膨剂的最佳质量比为6∶4,最优用量为机制砂质量的1.5‰。表面处理后机制砂的吸水率降低42.3%,MB值从3.2下降至1.5,混凝土减水剂掺量可降低5.7%~14.3%,1.5 h扩展度增大70~120 mm,同时降低了泥粉对混凝土力学性能和耐久性能的负面影响,减小了机制砂含泥量变化和黏土杂质种类差异引起的工作性能波动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高育欣
刘明
曾超
王福涛
王鹏
叶子
张磊
关键词:  表面改性  机制砂  黏土  混凝土  工作性能    
Abstract: The deterioration of concrete performance caused by manufactured sand with clay has become an urgent problem to be solved in concrete industry. Silicon-based waterproofing agent and clay anti-swelling agent were used as the two-component surface modifier. The modifier was applied to pretreat the surface of manufactured sand, which can improve the working performance of concrete with clay. The effects of the type and amount of modifier on the water absorption and methylene blue value (MB value) of manufactured sand, as well as the relationship with the adsorption amount of superplasticizer and the spacing between clay layers were investigated. The influence of surface modification treatment on the rheological behavior of mortar, the working performance, mechanical performance and durability of concrete was studied. For the two-component modifier, the optimal mass ratio of water-proofing agent and anti-swelling agent was 6∶4, and the optimal dosage was 1.5‰ of the quality of the manufactured sand. After surface treatment, the water absorption of manufactured sand was reduced by 42.3% and MB value decreased from 3.2 to 1.5. The dosage of superplasticizer can be reduced by 5.7%—14.3%, and the slump flow of 1.5 h can be increased by 70—120 mm. The results show that the surface modification technology can improve the fluidity and retention of the concrete and enhance the mechanical perfor-mance and durability of the concrete,and also reduce the fluctuation of concrete working performance caused by the variation of clay content and clay species.
Key words:  surface modification    manufactured sand    clay    concrete    working performance
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  O632  
通讯作者:  cwcggaoyuxin163.com   
作者简介:  高育欣,博士。主要从事水泥混凝土研究与应用、特种胶凝材料和固体废渣处置和资源化利用等方向的研究。参编行业及地方标准四部;发表学术论文超过55篇,其中EI/ISTP收录13篇。
引用本文:    
高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
GAO Yuxin, LIU Ming, ZENG Chao, WANG Futao, WANG Peng, YE Zi, ZHANG Lei. Research and Application of Surface Modification Technology of Manufactured Sand. Materials Reports, 2021, 35(22): 22072-22078.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100001  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22072
1 Dalas F, Pourchet S, Nonat A, et al. Cement and Concrete Research, 2015, 71,115.
2 Lyu S, Liu J, Zhou Q, et al. Industrial & Engineering Chemistry Research, 2014, 53(10),3908.
3 Ng P G, Cheah C B, Ng E P, et al. Construction and Building Mate-rials, 2020, 242,118103.
4 Ren Q, Zou H, Liang M, et al. RSC Advances, 2014, 4, 44018.
5 Stecher J, Plank J. Cement and Concrete Research, 2019, 119,36.
6 Tian H, Kong X, Su T, et al. Cement and Concrete Research, 2019, 115,43.
7 Xing G B, Wang W P, Xu J. RSC Advances, 2016, 6,106921.
8 Emaldi I, Hamzehlou S, Erkizia E, et al. Polymer Chemistry, 2019, 10(8),1000.
9 Tsukada K, Ishimori M, Kinoshita M. ACI Symposium Publication, 2003, 217,393.
10 Pop A, Badea C, Ardelean I.Applied Magnetic Resonance,2013,44(10), 1223.
11 Vickers T M, Farrington S A, Bury J R, et al. Cement and Concrete Research, 2005, 35(10), 1882.
12 Elavenil S, Bhoopathy V. International Journal of Mechanical Enginee-ring Research & Development, 2013,3, 1.
13 Jadhav P. International Journal for Computational Civil & Structural Engineering, 2013, 3(3), 621.
14 Norvell J K, Stewart J G, Juenger M C G, et al. Journal of Materials in Civil Engineering, 2007, 19(12), 1053.
15 Shen W G, Yang Z G, Cao L H, et al. Construction & Building Mate-rials, 2016, 119,385.
16 Chen X, Guo Y G, Li B, et al. Construction & Building Materials, 2020, 240, 117953.
17 Nehdi M L. Construction and Building Materials, 2014, 51,372.
18 Wang L, Wang D M, Bao W Z. Journal of Wuhan University of Techno-logy, 2013, 35(8), 6(in Chinese).
王林, 王栋民, 包文忠.武汉理工大学学报, 2013, 35(8), 6.
19 Wang Z M, Wu H, Xu Y, et al. Journal of Building Materials, 2014, 17(2),234(in Chinese).
王子明, 吴昊, 徐莹, 等.建筑材料学报, 2014, 17(2),234.
20 Ng S, Plank J. Cement and Concrete Research, 2012, 42(6), 847.
21 Li C Z, Feng N Q, Li Y D, et al. Cement & Concrete Research, 2005, 35(5), 867.
22 Lei L, Plank J. Cement and Concrete Research, 2012, 42(10), 1299.
23 Li Y, Guo H, Zhang Y, et al. Carbohydrate Polymers, 2014, 102,278.
24 Liu X, Guan J, Lai G, et al. Journal of Industrial and Engineering Chemistry, 2017, 55,80.
25 Tang X, Zhao C, Yang Y, et al. Construction & Building Materials, 2020, 252,119052.
26 Xu H, Sun S, Wei J, et al. Industrial & Engineering Chemistry Research, 2015, 54(37), 9081.
27 Li X K, Zheng D F, Zheng T, et al. Journal of Industrial & Engineering Chemistry, 2017, 49, 168.
28 Liu S, Mo X, Zhang C, et al. Journal of Dispersion Science & Techno-logy, 2004, 25(1), 63.
29 Tan H B, Guo Y L, Ma B G, et al. Ksce Journal of Civil Engineering, 2018, 22(8), 2934.
30 Lei L, Plank J. Cement & Concrete Research, 2014, 60,1.
31 Sakai E, Atarashi D, Daimon M. In: Proceedings of the 6th International Symposium on Cement & Concrete. Xi'an, China,2006.
32 Kirthika S K, Maruthupandian S, Singh S K. Construction and Building Materials, 2019, 228,116811.
33 Hasdemir S, Tuřrul A, Yılmaz M. Construction and Building Materials, 2016, 112,940.
34 Jerath S, Hanson N. Journal of Materials in Civil Engineering, 2007, 19(5), 367.
35 Kumar S, Gupta R C, Shrivastava S, et al. Construction & Building Materials, 2016, 107,103.
36 Kumar M, Singh N P, Singh N B. Indian Journal of Chemical Technology, 2009, 16,499.
37 Kagi D A,Ren K B. Building & Environment, 1995, 30(2),237.
38 Casagrande C A, Jochem L F, Onghero L, et al. Journal of Building Engineering, 2020, 29,101226.
39 Churchman G J. Applied Clay Science, 2002, 21(3), 177.
40 Liu X M, Chia K S, Zhang M H. Construction and Building Materials, 2011, 25(1), 335.
41 Anderson R L, Ratcliffe I, Greenwell H C, et al. Earth-Science Reviews, 2010, 98(3), 201.
42 Borralleras P, Segura I, Aranda M A G, et al. Cement and Concrete Research, 2019, 116,266.
43 Ferrari L, Kaufmann J, Winnefeld F, et al. Journal of Colloid and Interface Science, 2010, 347(1), 15.
44 Bai J J, Wang M, Shi C J, et al. Materials Reports, 2020, 34(6), 06172(in Chinese).
白静静, 王敏, 史才军,等.材料导报, 2020, 34(6), 06172.
45 Fernandes V A, Purnell P, Still G T, et al. Cement and Concrete Research, 2007, 37(5), 751.
[1] 汪苏平, 汪源, 胡志豪, 潘阳, 胡传山, 李正平, 高慧敏, 文轩. 乳液聚合法制备降黏型聚羧酸减水剂[J]. 材料导报, 2021, 35(z2): 163-166.
[2] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[3] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[4] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[5] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[6] 韩向朝, 潘毅, 谢雨冬, 张旋, 郝哲昕, 钱春香. 无人机图像采集法对清水混凝土外观质量评价的研究[J]. 材料导报, 2021, 35(z2): 205-212.
[7] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[8] 唐占荣, 杨耀国, 叶海龙, 康海平. 高盐碱土壤对混凝土电杆腐蚀的影响分析[J]. 材料导报, 2021, 35(z2): 224-227.
[9] 李书进, 刘源涛, 厉见芬, 盛炎民. 盾构废弃泥沙再生制备高性能注浆材料的试验研究[J]. 材料导报, 2021, 35(z2): 275-278.
[10] 于泽明, 陈艳, 马嵘萍, 胡晓辰, 吕祥锋. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(z2): 669-677.
[11] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[12] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[13] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[14] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[15] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed