Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23106-23120    https://doi.org/10.11896/cldb.20060153
  金属与金属基复合材料 |
稀有金属钌的分离富集技术与分析方法的研究现状及展望
张小艳1,2, 陈振斌1,2, 李慧1,2, 陈亚兰3, 孙元4, 李晓明5,6
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
3 兰州理工大学外国语学院,兰州 730050
4 中国科学院金属研究所,沈阳 110000
5 甘肃银光化工集团有限公司,白银 730900
6 兰州理工大学白银新型材料研究所,白银 730900
Research Status and Prospect of Separation and Enrichment Technology and Analysis Method of Rare Metal Ruthenium
ZHANG Xiaoyan1,2 , CHEN Zhenbin1,2, LI Hui1,2, CHEN Yalan3, SUN Yuan4, LI Xiaoming5,6
1 College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Foreign Languages, Lanzhou University of Technology, Lanzhou 730050, China
4 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China
5 Gansu Yinguang Chemical Industry Group Co.Ltd, Baiyin 730900, China
6 Baiyin Research Institute of Novel Materials of Lanzhou University of Technology, Baiyin 730900, China
下载:  全 文 ( PDF ) ( 8716KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钌属于铂族金属,是铂族金属中研究和应用都较少的元素,常与其他铂族金属伴生。因钌在地壳中的含量十分稀少且矿石品位很低,导致其资源成本高,并使其成为被严格控制的战略资源,应用范围受到限制。然而,随着科学技术的迅速发展,钌的各种优异性能不断被发现,如高硬度、高强度、优异的催化活性、高导电性等,使其被广泛应用于电子、化工、电化学、航空航天等领域,使得市场对钌的需求量迅速增加。
钌在自然界不仅含量少,且应用过程中会产生大量的二次资源钌废料,长此以往,必将导致我国钌资源供需失衡,最终影响我国科技发展和国家战略安全。随着全球贵金属回收与再利用产业的蓬勃发展,现已开发出多种高效分离回收钌的方法及精准检测钌的技术,对实现钌资源循环利用、扩展其应用范围、控制成本以及维护我国战略安全具有重要意义。
长期以来,经过科学家们的不懈努力,钌的分离回收方法和检测技术已取得显著的成果。目前最常用的分离方法有离子交换法、萃取法、吸附法、沉淀法及离子印迹法等,检测方法有分光光度法、质量法、原子吸收光谱法、X射线荧光光谱法、电感耦合等离子体-发射光谱法、电感耦合等离子体-质谱法、中子活化法、色谱法及原位法等。这些技术为我国循环经济和可持续发展的研究及应用提供了技术支撑。
本文回顾了近年来有关钌的研究情况,结合当前发展现状对现有分离富集方法及分析方法展开综述,并对未来钌的分离回收技术及分析方法加以展望,以期为后期研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张小艳
陈振斌
李慧
陈亚兰
孙元
李晓明
关键词:  金属钌  分离方法  检测技术    
Abstract: Ruthenium (Ru),one of the platinum group metal elements, and always present with other platinum group metals, is studied less compared with the others. Because there are few mineral containing Ru and the contents of Ru in ores are very low, Ru becomes very expensive and is treated as a strategic resource, which makes the scope of application limited. However, with the rapid development of science and technology, the remarkable properties of Ru such as high hardness, high strength, excellent catalytic activity, high conductivity are discovered constantly and applied in fields like electronics, chemical industries, electrochemistry, aerospace etc, leading to the demand increasing quickly.
The content of Ru is not only low in nature, but also a large amount of secondary resource Ru waste will be generated during the application process, which will inevitably lead to an imbalance between the supply and demand of ruthenium resources in China, and ultimately affect the development of China's science and technology and national security strategy. In recent times, however, there has been notable improvements in the development of the global precious metal recovery and reuse industry, a variety of efficient separation and recovery methods and precise detection technologies for ruthenium have also been developed, and are of great significance for achieving resource recycling, expanding the scope of application, controlling cost, and maintaining China's strategic security.
After a long time of unremitting efforts, the separation and recovery methods and the detection techniques of Ru have achieved a relatively high level. According to reports, the most commonly adopted separation methods include ion exchange, extraction, adsorption, precipitation and ion imprinting, etc., and the detection methods include spectrophotometry, gravimetry, atomic absorption spectroscopy, X-ray fluorescence spectroscopy, and inductively coupled plasma-emission spectrometry, inductively coupled plasma-mass spectrometry, neutron activation method, chromatography and in-situ monitoring, etc. These technologies provide technical support for the research and application of China's circular economy and sustainable development.
This paper reviews the research status of ruthenium in recent years, summarizes the existing separation and enrichment methods and analysis methods based on the current development status, and prospects the future separation and recovery technology and analysis methods of ruthe-nium, so as to provide reference for future research.
Key words:  ruthenium    separation method    detection technology
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TQ32  
基金资助: 沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金(18LHZD003;18LHPY004)
通讯作者:  zhenbinchen@163.com   
作者简介:  张小艳,现为兰州理工大学材料科学与工程学院硕士研究生,在陈振斌教授的指导下进行研究。目前主要研究领域为高温合金废料中稀贵金属的分离纯化研究。
陈振斌, 兰州理工大学材料学院教授,博士研究生导师。2002—2007年,兰州大学硕博连读攻读博士学位;2007年起,任教于兰州理工大学材料学院,期间于2008-2011年在中科院兰州化物所在职从事博士后研究工作,研究方向为吸附分离性功能高分子材料。长期从事吸附分离性功能高分子材料的研究。主持完成甘肃省自然科学基金1项,甘肃省教育厅硕士研究生导师基金项目1项;作为技术负责人参加国家自然科学基金2项,甘肃省高等学校基本科研基金1项;作为技术负责人参与完成横向项目2项;曾获甘肃省教育厅教学成果奖1项;申报专利2项。发表论文50余篇,其中SCI、EI收录32篇。2012年分别获“凯盛开能杯”第五届全国大学生节能减排社会实践与科技竞赛三等奖指导教师奖、兰州理工大学毕业论文“优秀指导教师”和兰州理工大学大学生创业计划大赛“优秀指导教师”奖,2013年参与制作的《高分子物理》课件获国家级课件大赛三等奖。
引用本文:    
张小艳, 陈振斌, 李慧, 陈亚兰, 孙元, 李晓明. 稀有金属钌的分离富集技术与分析方法的研究现状及展望[J]. 材料导报, 2021, 35(23): 23106-23120.
ZHANG Xiaoyan, CHEN Zhenbin, LI Hui, CHEN Yalan, SUN Yuan, LI Xiaoming. Research Status and Prospect of Separation and Enrichment Technology and Analysis Method of Rare Metal Ruthenium. Materials Reports, 2021, 35(23): 23106-23120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060153  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23106
1 Wang H, He X T, Zhao Y, et al. Precious Metals, 2018, 39(S1), 173 (in Chinese).
王欢, 贺小塘, 赵雨, 等. 贵金属, 2018, 39(S1), 173.
2 Chen W C, Kong F T, Liu X P, et al. Physical Chemistry Chemical Physics, 2016, 18(16), 11213.
3 Liu J, Ma B L, Zhao A T, et al. Journal of the Brazilian Chemical Society, 2019, 30(4), 867.
4 Subarkhan M M, Ramesh R. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2015, 138, 264.
5 Zhang Y, Liu L, Cao X, et al. Polyhedron, 2016, 105, 170.
6 Ganesamoorthy S, Tamizh M M, Shanmugasundaram K, et al. Che-minform, 2013, 54(51), 7035.
7 He L, Chen T, Gong D, et al. Organometallics, 2012, 31(14), 5208.
8 Gu Z M, Wang Y, Zhao M, et al. Chinese Journal of Applied Chemistry, 2018, 35(2), 206 (in Chinese).
顾芷萌, 王颖, 赵敏, 等. 应用化学, 2018, 35(2), 206.
9 Zhang D, Liu W. Rare Metal Materials & Engineering, 2016, 45(5), 1353.
10 Jackson M T, Prichard H M, et al. Science of the Total Environment, 2010, 408(6), 1276.
11 Swain P, Mallika C, Jagadeeswara R C. Journal of Radioanalytical & Nuclear Chemistry, 2013, 298(2), 781.
12 Swain P, Mallika C, Jagadeeswara R C, et al. Journal of Applied Electrochemistry, 2015, 45(2), 209.
13 Li F, Shang Y, Ding Z, et al. Separation and Purification Technology, 2017, 182, 9.
14 Aktas S, Morcali M H, Aksu K, et al. Transactions of the Indian Institute of Metals, 2017, 71, 697.
15 Song Y, Tsuchida Y, Matsumiya M, et al. Hydrometallurgy, 2018, 181, 164.
16 Won S W, Kwak I S, Yun Y S. Bioresource Technology, 2014, 160, 93.
17 Bui T H, Hong S P, Yoon J. Water Research, 2018, 134, 22.
18 Suh M Y, Sohn S C, Lee C H, et al. Journal of the Korean Chemical Society, 2000, 44(6), 526.
19 Lesniewska B A, Godlewska-zylkiewicz B, Ruszczyńska A, et al. Analytica Chimica Acta, 2006, 564(2), 236.
20 Zambrzycka-Szelewa E, Lulewicz M, Godlewska- Z'ylkiewicz B. Spectrochimica Acta Part B, 2017, 133, 81.
21 Aly H F, EL-said N, Kassem A T. European Journal of Applied Sciences, 2016, 8(1), 28.
22 Zhang H, Tang J, Zhang K. Journal of Tangshang Teachers College, 2005, 27(5), 17 (in Chinese).
张辉, 唐杰, 张凯. 唐山师范学院学报, 2005, 27(5), 17.
23 Zhang M, She Z B, Liu J, et al. Precious Metals, 2012, 33(1), 53 (in Chinese).
张敏, 佘振宝, 刘静, 等. 贵金属, 2012, 33(1), 53.
24 Lee S H, Yoo J H, Kim J H. Korean Journal of Chemical Engineering, 2004, 21(5), 1038.
25 Verma P K, Mohapatra P K. Radiochimica Acta, 2020, 108(8), 603.
26 Maheswari M A, Subramanian M S. Journal of AOAC International, 2003, 86(6), 1218.
27 Sener S, Tokalioğlu S, Soykan C, et al. Journal of AOAC International, 2014, 97(2),598.
28 Minami T, Konagaya W, Zheng L, et al. Analytica Chimica Acta, 2015, 854, 183.
29 Xian L, Zhen Y, Qing Y, et al. Global Geology, 2007, 26(3), 385.
30 Pan B, Wu J, Pan B, et al. Water Research, 2009, 43(17), 4421.
31 Bui T H, Hong S P, Yoon J. Water Research, 2018, 134, 22.
32 William C G, Brian T. Journal of AOAC International, 2019, 83(2), 407.
33 Ali Z, Liang W, Jin L, et al. Science of Advanced Materials, 2015, 7(7), 1233.
34 Yan Y, Wang Q, Xiang Z, et al. Separation Science and Technology, 2018, 53(13), 2064.
35 Kuchekar S R, Aher H R, Bhumkar S D, et al. Separation Science and Technology, 2019, 55(14), 2570.
36 Moeyaert P, Miuirditchian M, Masson M, et al. Chemical Engineering Science, 2016, 158, 580.
37 Reddy S R, Trikha R, Murali R, et al. Progress in Nuclear Energy, 2016, 86, 50.
38 Amiri-Rigi A, Abbasi S. Food Chemistry, 2016, 197, 1002.
39 Mustafa S, Erkan Y, Mehrorang G, et al. Journal of AOAC International, 2019 (6), 6.
40 Shoemaker Jody A. Journal of AOAC International, 2019, 85(6), 6.
41 Yan L, Lopez-Avila V, Alcaraz M, et al. Journal of High Resolution Chromatography, 2015, 16(2),106.
42 Ikeda S, Mori T, Ikeda Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2016, 4, 2459.
43 Zhang H, Yang X, Liu Z, et al. Chemical Engineering Journal, 2017, 308, 370.
44 Zahirovic A, Osmankovic I, Turkusic E, et al. Analytical Methods, 2018, 10, 5078.
45 Kuchekar S R, Shelar Y S, Bhor R J, et al. Separation Science and Technology, 2015, 50(8), 1190.
46 Poonma, Malik, Ana, et al. Solvent Extraction & Ion Exchange, 2011, 29(2), 176.
47 Kedari S, Coll M T, Fortuny A, et al. Separation Science & Technology, 2005, 40(9), 1927.
48 Swain P, Annapoorani S, Srinivasan R, et al. Separation Science & Technology, 2014, 49(1), 112.
49 Kedari C S, Coll M T, Fortuny A, et al. Hydrometallurgy, 2006, 82(1-2), 40.
50 Rzelewska M, Wis'niewski M, Regel-Rosocka M. Separation Science & Technology, 2018, 53(8), 1249.
51 Du H R. Journal of Sichuan Normal University (Natural Science), 2005, 28(5), 594(in Chinese).
杜惠蓉. 四川师范大学学报(自然科学版), 2005, 28(5), 594.
52 Lingen J, Shiyan L, Cheng L G, et al. Solvent Extraction & Ion Exchange, 1989, 7(4), 613.
53 Yan G L, Alstad J. Journal of Radioanalytical & Nuclear Chemistry, 1995, 201(3), 191.
54 Tateno H, Park K C, Tsukahara T. Chemistry Letters, 2017, 47, 318.
55 Mhaske A, Dhadke P. Hydrometallurgy, 2002, 63(2), 207.
56 Zhao Y, Zhou L. Metallurgical Analysis, 2017, 37(2),13.
57 Zeng H F. Rock and Mineral Analysis, 1996, 15(2), 92 (in Chinese).
曾惠芳.岩矿测试, 1996, 15(2), 92.
58 Minamisawa H, Kuroki H, Arai N, et al. Analytica Chimica Acta, 1999, 398(2), 289.
59 Gandon R, Boust D, Bedue O. Radiochimica Acta, 1993, 61(1), 41.
60 Han J W, Xiao J, Qin W Q, et al. JOM, 2017, 69(9), 1.
61 Ma W S, Liu D. Chinese Journal of Analytical Chemistry, 2004, 32(9), 1185.
62 Downey D M, Clipper S A. Analytica Chimica Acta, 1985, 174, 279.
63 Kim S, Choi Y E, Yun Y S. Journal of Hazardous Materials, 2016, 313(5), 29.
64 Reddy S R, Pandey N K, Mallika C, et al. Chemical Engineering Research & Design, 2016, 115, 91.
65 Zhang S, Ning S, Liu H, et al. Microporous and Mesoporous Materials, 2020, 303, 110293.
66 Zhang S C, Ning S Y, Zhou J, et al. Nuclear Science and Techniques, 2020, 31(4), 16.
67 Yan J S, Li Y, et al. Microchemical Journal, 2019, 145, 287.
68 Binti-Rosli N N, Ming L C, Mahadi A H, et al. Key Engineering Mate-rials, 2018, 765, 92.
69 Mohanty B N, Ramani Y, Krishnan H, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 321(2), 489.
70 Kwak I S, Won S W, Chung Y S, et al. Bioresource Technology, 2013, 128,30.
71 Kora A J, Bhaskarapillai A, Toleti S R. Separation Science and Technology, 2016, 51(9), 1455.
72 Zhang X Y, Sun Y, Li H, et al. Materials Reports A: Review Papers, 2020, 34(7), 15163 (in Chinese).
张小艳, 孙元, 李慧, 等. 材料导报:综述篇, 2020, 34(7), 15163.
73 Forouzan A, Zadeh Z H, Omid S, et al. Journal of AOAC International, 2019, (1), 1.
74 Luo F, Huang S, Xiong X, et al. RSC Advances, 2015, 5(83), 67365.
75 Shirazifard P, Sadjadi S, Ahmadi S J, et al. Separation Science and Technology, 2016, 51(2), 248.
76 Zambrzycka E, Godlewska-Zyłkiewicz B. Microchimica Acta, 2014, 181(9-10), 1019.
77 Zambrzycka E, Kiedysz U, Wilczewska A Z, et al. Analytical Methods, 2013, 5, 3096.
78 Godlewska-Zyłkiewicz B, Zambrzycka E, Leśniewska B, et al. Talanta, 2012, 89, 352.
79 Monier M, Abdel-Latif D A, Youssef I. Journal of Colloid and Interface Science, 2018, 513, 266.
80 Zeng J, Zhang Z, Zhou H, et al. Polymers for Advanced Technologies, 2019, 30, 1865.
81 Zeng J, Zhang Z, Dong Z, et al. Reactive & Functional Polymers, 2017, 115, 1.
82 Dong Z, Zeng J, Zhou H, et al. Journal of Chemical Technology & Biotechnology, 2019, 94(3), 942.
83 Zou S, Li G, Rees T W, et al. Chemistry-A European Journal, 2018, 24(3), 690.
84 Li D, He Q, He Y, et al. Biosensors and Bioelectronics, 2017, 94, 328.
85 Huo Y Y, Wang H, Zhang X Y, et al. Metallurgical Analysis, 2019, 29(5), 66(in Chinese).
霍燕燕, 王欢, 张小英, 等. 冶金分析, 2019, 29(5), 66.
86 Han Q, Huo Y Y, Chen H, Yang X H. Metallurgical Analysis, 2010, 30 (5), 54 (in Chinese).
韩权, 霍燕燕, 陈虹, 杨晓慧.冶金分析, 2010, 30 (5), 54.
87 Yu J, Zhao X. Journal of Dalian University of Technology, 2018(3), 2096 (in Chinese).
余江,赵霞.大连理工大学学报,2018(3), 2096.
88 Lv Y Z, Wu X L. Chinese Journal of Analytical Chemistry, 1994, 22(8),791 (in Chinese).
吕耀忠, 吴秀兰.分析化学, 1994, 22(8), 791.
89 Zanje S B, Suryavanshi V J, Kokare A N, et al. Journal of Analytical Chemistry, 2018, 73(5), 438.
90 Krishna G, Mohan K. Indian Journal of Applied Research, 2013, 3(7), 2249.
91 Veerabhadraswamy M, Devaraj T D, Jayanna B K. Analytical Chemistry Letters, 2018, 8(6), 757.
92 Zhi Y, Jie G, Jian D, et al. Chinese Journal of Analysis Laboratory, 2006, 25(2), 10.
93 Li Z B, Cao Q E, Wang J L, et al. Chinese Journal of Analytical Che-mistry, 2000(1), 31(in Chinese).
李祖碧, 曹秋娥, 王加林, 等. 分析化学, 2000 (1), 31.
94 Guo J, Yang M H, Yang Z J, et al. Chinese Journal of Analysis Laboratory, 2005, 24(2), 38 (in Chinese).
郭洁, 杨明惠, 杨志毅,等. 分析试验室, 2005, 24(2), 38.
95 Liu X L, Xie J C, Li X. Journal of Gansu Education College (Natural Science Edition), 2002, 16(2), 58(in Chinese).
刘锡林, 谢建成, 李欣. 甘肃教育学院学报(自然科学版), 2002, 16(2), 58.
96 Ye C L, Wang Z K, Feng S L, et al. Physical Testing and Che-mical Analysis (Part B: Chemical Analysis), 2005 (11), 58 (in Chinese).
叶存玲, 王治科, 冯素玲, 等. 理化检验(化学分册), 2005 (11), 58.
97 Song X S, Cui Y L. Metallurgical Analysis, 2008, 28 (5), 51(in Chinese).
宋学省, 崔玉理. 冶金分析, 2008, 28 (5), 51.
98 Yang X R, Yang M H, Li C N, et al. Chemical World, 2002, 43(9), 469(in Chinese).
杨孝容, 杨明惠, 李崇宁, 等. 化学世界, 2002, 43(9), 469.
99 Li C N, Li Z B, Xu Q H, et al. Journal of Yunnan University (Natural Sciences Edition), 2000, 22(2),134(in Chinese).
李崇宁, 李祖碧, 徐其亨,等. 云南大学学报(自然科学版), 2000, 22(2),134.
100 Prasad S, Naik R M, Srivastava A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 70(5),958.
101 Kuang Y Y, Lin H S, Xu Q H. Chinese Journal of Analytical Chemistry, 2000, 28(10),1256(in Chinese).
匡云艳, 林会松, 徐其亨. 分析化学, 2000, 28(10),1256.
102 Yahua Q, Bo W, Jizong W. Journal of Renewable & Sustainable Energy, 2018, 10(2),024703.
103 Guan Y X, Zhu L Y, Chen D Q. Precious Metals, 2009, 30 (2), 41(in Chinese).
管有祥, 朱利亚, 陈登权. 贵金属, 2009, 30 (2), 41.
104 Zhu Wuxun, Guang Youxiang, Li Kaizhong, et al. Precious Metals, 2007, 28(1), 55.
105 Junmei G, Shouli H, Wenjin T, et al. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(3), 44.
106 Mao X J, Liu L, Xiao F, et al. Metallurgical Analysis, 2020, 40(3),1 (in Chinese).
毛香菊, 刘璐, 肖芳, 等. 冶金分析, 2020, 40(3), 1.
107 Benzo Z, Salas J, Araujo P W, et al. Chemometrics and Intelligent Laboratory Systems, 1998, 40(1), 109.
108 Yang H Y, Li Q, Ma Y, et al. Precious Metals, 2013(2), 56 (in Chinese).
杨红艳, 李青, 马媛, 等. 贵金属, 2013(2), 56.
109 Zhang N, Ma Y, Shen Y, et al. Analytical Letters, 2014, 47(12), 2072.
110 Zhang G, Tian M. Optics & Spectroscopy, 2015,118(4), 513.
111 Zhou K, Li G P, Sun B L, et al,Chinese Journal of Spectroscopy Laboratory, 2013(3), 184(in Chinese).
周恺, 李国平, 孙宝莲,等. 光谱实验室, 2013(3), 184.
112 Pan L J, Wang F, Xiao D W, et al. Industrial Catalysis, 2020, 28(7), 75.
潘丽娟, 王飞, 校大伟, 等. 工业催化, 2020, 28(7), 75.
113 Wang J, Xiong X Y. Material Research and Application, 2019 (1), 66(in Chinese).
王津, 熊晓燕. 材料研究与应用, 2019 (1), 66.
114 Liu Q X, Wei X J, Pan J M, et al. Metallurgical Analysis, 2012, 32(10), 82(in Chinese).
刘秋香, 魏小娟, 潘剑明, 等. 冶金分析, 2012, 32(10),82.
115 Zhou Y J. Metallurgical Analysis, 2017(12),77(in Chinese).
周扬杰. 冶金分析, 2017(12),77.
116 Evans C C, Macrae J C, Wilson S. Journal of Agricultural Science, 1977, 89,17.
117 Arkin I, Chen J, Kunihiro W. Chinese Journal of Analytical Chemistry, 2007(6),100(in Chinese).
艾尔肯·依不拉音, 陈坚, 渡辺邦洋. 分析化学, 2007(6), 100.
118 Won S W, Kwak I S, Mao J, et al. Industrial & Engineering Chemistry Research, 2015, 54, 7148.
119 Gao W H. Chlor-Alkali Industry, 2007(1), 38(in Chinese).
高卫红. 氯碱工业, 2007(1), 38.
120 De Camargo M S, De Grandis R A, Da Silva M M, et al. Biometals, 2019, 32(1), 89.
121 Filatova D G, Alov N V, Marikutsa A V, et al. Moscow University Che-mistry Bulletin, 2015, 70(5), 234.
122 Yu S, Ni Z, Xiao G, et al. Rock and Mineral Analysis, 2016, 35(3), 259.
123 Ni W, Mao X, Zhang H. Analytical Letters, 2019, 52(11), 1699.
124 Liu Y Z, Cai Z F. Journal of Nuclear and Radiochemistry, 1993, 15(1), 26 (in Chinese).
刘永忠, 柴之芳. 核化学与放射化学, 1993, 15(1), 26.
125 Wang J X, Cai Z F. Journal of Nuclear and Radiochemistry, 1992(4), 239(in Chinese).
王建新, 柴之芳. 核化学与放射化学, 1992(4), 239.
126 Gijbels R, Hoste J. Analytica Chimica Acta, 1968, 41(1), 419.
127 Koda Y. Journal of Radioanalytical Chemistry, 1977, 36(1), 35.
128 Ma P, Hou Q, Mao X, et al. Rock & Mineral Analysis, 1995, 14(3), 208(in Chinese).
马配学, 侯泉林, 毛雪瑛, 等. 岩矿测试, 1995, 14(3), 208.
129 Zhang H S, Shi Z D. Journal of Wuhan University (Natural Science Edition), 1993 (4),41 (in Chinese).
张华山,史自东. 武汉大学学报:自然科学版, 1993 (4), 41.
130 Zhang X S, Shi L, Zhang L, et al. Journal of Chromatography A, 1997, 789(1-2), 485.
131 Ballschmiter K. Journal of Chromatographic Science,1970, 9, 9.
132 Liu Q P, Wang C Y, Liu J C, et al. Chinese Journal of Analytical Che-mistry, 1992, 20(9), 1088 (in Chinese).
刘绮萍, 王园朝, 刘锦春,等.分析化学, 1992, 20(9), 1088.
133 Johri K N, Mehra H C. Microchimica Acta, 1970, 58(5), 807.
134 Shiwei C, Yang W, Zhi Q, et al. Physical Chemistry Chemical Physics: PCCP, 2016, 18(1), 119.
135 Dubey R K, Bhalotra A, Gupta M K, et al. Microchemical Journal, 1998, 58(1), 117.
136 Palaniappan R, Kumar T A. Analyst, 1993, 118(3), 293.
137 Hong T K, Kwon Y S, Czae M Z. Analytical Science and Technology, 1997, 10(2), 119.
138 Elisabeth H, Arno B, Henrike S, et al. ACS Catalysis, 2018, 8(10), 2498.
139 Martín-Yerga D, Pérez-Junquera A, Hernandez-Santos D, et al. Physical Chemistry Chemical Physics, 2017, 19(34), 22633.
140 Martín-Yerga D, Pérez-Junquera A, Gonzɑlez-García M B, et al. Electrochimica Acta, 2018, 264, 183.
141 Lan G, Zhou Y, Shen H, et al. Chinese Journal of Catalysis, 2018, 39(1), 146.
142 Saveleva V A, Wang L. The Journal of Physical Chemistry Letters, 2016, 7(16), 3240.
143 Gustafson K. Chemistry-A European Journal, 2020, 26(15), 3411.
[1] 卢兵兵, 王海斗, 董丽虹, 赵云才, 王慧鹏. 金属磁记忆疲劳损伤检测的应用现状及发展前景[J]. 材料导报, 2021, 35(7): 7139-7144.
[2] 杨森, 鲁雁秋, 孙凤, 陈耀凯. 基于纳米孔的单分子检测技术及其研究进展[J]. 材料导报, 2020, 34(Z2): 177-181.
[3] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed