Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20090086-7    https://doi.org/10.11896/cldb.20090086
  无机非金属及其复合材料 |
不同密度泡沫混凝土梁断裂特性及数值模拟
陈徐东1,2, 冯璐2, 张锦华3,4,*, 刘志恒2, 董文5, 温荣鲲2
1 东南大学混凝土及预应力混凝土教育部重点实验室,南京 210096
2 河海大学土木与交通学院,南京 210098
3 东南大学爆炸安全防护教育部工程研究中心,南京 211189
4 东南大学土木工程学院,南京 211189
5 96901部队,北京 100089
Fracture Characteristics and Numerical Simulation of Foamed Concrete Beams of Different Densities
CHEN Xudong1,2, FENG Lu2, ZHANG Jinhua3,4,*, LIU Zhiheng2, DONG Wen5, WEN Rongkun2
1 Key Laboratory of C & PC Structures, Ministry of Education, Southeast University, Nanjing 210096, China
2 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
3 Engineering Research Center of Safety and Protection of Explosion & Impact of Ministry of Education (ERCSPEIME), Southeast University, Nanjing 211189, China
4 School of Civil Engineering, Southeast University, Nanjing 211189, China
5 Unit 96901, Beijing 100089, China
下载:  全 文 ( PDF ) ( 8492KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究泡沫混凝土(Foamed concrete,FC)梁的断裂特性和裂缝扩展过程,采用不同密度和不同初始缝高比的试件,开展不同加载速率下的三点弯断裂试验。结果表明,FC梁的抗弯承载力具有加载速率效应,其峰值荷载随加载速率的上升而增大。但加载速率效应随FC密度的增长逐渐减弱,且初始缝高比越大,加载速率效应越不明显。FC梁抗弯承载力随密度的减小而下降,但其抵抗变形的能力增强。利用ABAQUS建立FC梁的有限元模型,借助扩展有限元方法(Extended finite element method,XFEM)模拟FC梁的裂缝扩展过程,得到其断裂过程的荷载-裂缝张口位移(P-CMOD)曲线。结果表明,数值模拟的结果与试验结果吻合良好,验证了XFEM的合理性和精确性。FC梁在达到峰值荷载前的裂缝开展形式主要为拉伸裂缝,达到峰值荷载后,裂缝进入失稳扩展阶段,剪切裂缝逐渐增多。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈徐东
冯璐
张锦华
刘志恒
董文
温荣鲲
关键词:  泡沫混凝土(FC)梁  扩展有限元方法(XFEM)  断裂特性  密度  加载速率效应    
Abstract: To investigate the fracture characteristics and crack propagation of foamed concrete (FC) beams, three-point bending fracture tests under different loading rates were carried out on specimens with different densities and initial crack-depth ratios. The results indicate the flexural bea-ring capacity of FC beams has a loading rate effect, which increases with the enhancement of loading rate. However, the loading rate effect decreases with the rise of density, and the larger the initial crack-depth ratio, the less significant the loading rate effect. The flexural bearing capacity declines with the decrease of density, but its ability to resist deformation is enhanced. The finite element models of FC beams were established with ABAQUS. The extended finite element method (XFEM) was used to simulate the crack propagation of FC beams, and the load-crack mouth opening displacement (P-CMOD) curves of the fracture process were obtained. The results indicate the numerical simulation agrees well with the experimental data, which verifies the rationality and accuracy of XFEM. The crack development patterns of FC beams before reaching the peak load are mainly tensile cracks. After reaching the peak load, cracks enter the instability development stage, and shear cracks gradually increase.
Key words:  foamed concrete (FC) beams    extended finite element method (XFEM)    fracture characteristics    density    loading rate effect
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金项目(51979090); 江苏省自然科学优秀青年基金项目(BK20190075); 中国科协青年人才托举项目
通讯作者:  zjh796038@163.com   
作者简介:  陈徐东,河海大学土木与交通学院结构工程研究所,青年教授。2014年7月毕业于河海大学,获得工学博士学位。主要从事混凝土动态损伤机理和动力特性,混凝土疲劳破坏机制与裂缝扩展机理等方面的研究。在国内外期刊以第一或通讯作者发表论文共80多篇,授权发明专利18项。
张锦华,东南大学爆炸安全防护教育部工程研究中心,副教授。2015年7月毕业于解放军理工大学,获得工学博士学位。主要从事细观力学及其在防护工程中的应用,工程材料与结构抗冲击爆炸的计算理论与方法等研究。发表学术论文50余篇,获授权专利及软件著作权10余项。
引用本文:    
陈徐东, 冯璐, 张锦华, 刘志恒, 董文, 温荣鲲. 不同密度泡沫混凝土梁断裂特性及数值模拟[J]. 材料导报, 2022, 36(4): 20090086-7.
CHEN Xudong, FENG Lu, ZHANG Jinhua, LIU Zhiheng, DONG Wen, WEN Rongkun. Fracture Characteristics and Numerical Simulation of Foamed Concrete Beams of Different Densities. Materials Reports, 2022, 36(4): 20090086-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090086  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20090086
1 Li M, Huang Y S, Zhang S B, et al. Materials Reports, 2016, 30(S1), 402(in Chinese).
李猛, 黄寅生, 张少波, 等. 材料导报, 2016, 30(S1), 402.
2 Raj A, Sathyan D, Mini K M. Construction and Building Materials, 2019, 221, 787.
3 Zhou X X, Yang Z Z, Xu Y J, et al. Materials Reports A:Review Papers, 2019, 33(8), 2546(in Chinese).
周薛霞,杨赞中,徐艳娇,等. 材料导报:综述篇,2019,33(8),2546.
4 Chen B, Liu J. Journal of Building Materials, 2010, 13(3), 286(in Chinese).
陈兵, 刘睫. 建筑材料学报, 2010, 13(3), 286.
5 Ferretti D, Michelini E, Rosati G. Cement and Concrete Research, 2015, 67, 156.
6 Khosravani M R, Silani M, Weinberg K. Theoretical and Applied Fracture Mechanics, 2018, 93, 302.
7 Lei D Y, Guo L P, Sun W. Materials Reports B:Research Papers, 2016, 30(10), 122(in Chinese).
雷东移, 郭丽萍, 孙伟. 材料导报:研究篇, 2016, 30(10), 122.
8 Wu Q, Sun X W, Wang J. Concrete, 2017(3), 157(in Chinese).
吴潜, 孙小巍, 王瑾. 混凝土, 2017(3),157.
9 Wu T, Wang S G, Du D S. New Building Materials, 2013, 40(5), 80(in Chinese).
吴桐, 王曙光, 杜东升. 新型建筑材料, 2013, 40(5), 80.
10 Belytschko T, Black T.International Journal for Numerical Methods in Engineering, 1999, 45(5), 601.
11 Jia Y T, Yang Y G. Bulletin of the Chinese Ceramic Society, 2016, 35(9), 2804(in Chinese).
贾艳涛, 杨永敢. 硅酸盐通报, 2016, 35(9), 2804.
12 Yuan P, Ma Q Y, Zhang H D. Journal of Vibration and Shock, 2014, 33(17), 116(in Chinese).
袁璞, 马芹永, 张海东. 振动与冲击, 2014, 33(17), 116.
13 Eftekhari M, Ardakani S H, Mohammadi S. Theoretical and Applied Fracture Mechanics, 2014, 72, 64.
14 Zhang X D, Ding Y, Ren X C. Engineering Mechanics, 2013, 30(7), 14(in Chinese).
张晓东, 丁勇, 任旭春. 工程力学, 2013, 30(7), 14.
15 Das S, Hoffarth C, Ren B, et al. Journal of Engineering Mechanics, 2019, 145, 04019049.
16 Malekan M, Silva L L, Barros F B, et al. Advances in Engineering Software, 2018, 115, 168.
17 Kenny N, Dai Q L. Journal of Materials in Civil Engineering, 2011, 23(12), 1662.
18 Liang N H, Zhong Y, Liu X R. Journal of Central South University (Science and Technology), 2017, 48(10), 2783(in Chinese).
梁宁慧, 钟杨, 刘新荣. 中南大学学报(自然科学版), 2017, 48(10), 2783.
19 Cheng Y L, Yang X H, Zhang C C. Chinese Journal of Solid Mechanics, 2017, 38(3), 281(in Chinese).
程一磊, 杨新华, 张川川. 固体力学学报, 2017, 38(3), 281.
20 Yin A Y, Yang X H, Yang S F, et al. Engineering Fracture Mechanics, 2011, 78(12), 2414.
21 Ministry of Housing and Urban-Rural Development of the People's Republic of China. JG/T266-2011 Foamed concrete. Standards Press of China, 2011(in Chinese).
中华人民共和国住房和城乡建设部. JG/T266-2011 泡沫混凝土. 中国标准出版社, 2011.
[1] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[2] 王心桥, 张健, 苏彤, 赵兴, 郭永权. 先进液态金属电池熔盐电解质的设计[J]. 材料导报, 2022, 36(1): 20090223-7.
[3] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[4] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[5] 邓德伟, 吕捷, 马玉山, 张勇, 黄治冶. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 8127-8133.
[6] 梁捷, 耿佃桥, 张群. 固液密度比对PMMA/HDPE悬浮液粘度的影响[J]. 材料导报, 2021, 35(4): 4181-4185.
[7] 张静茹, 张志昂, 韩笑, 房蕊, 徐若歆, 赵丽丽. 提高PVDF基有机-无机柔性复合膜储能密度的研究新进展[J]. 材料导报, 2021, 35(23): 23162-23170.
[8] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[9] 杨慧, 童莉葛, 尹少武, 王立, 汉京晓, 唐志伟, 丁玉龙. 水合盐热化学储热材料的研究概述[J]. 材料导报, 2021, 35(17): 17150-17162.
[10] 章小峰, 李家星, 万亚雄, 武学俊, 黄贞益. 退火工艺对冷轧中锰中铝低密度钢组织与性能的影响[J]. 材料导报, 2021, 35(16): 16099-16103.
[11] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[12] 杜颖妍, 陈婷, 贾倩, 李越, 毋志民. 新型稀磁半导体Mn掺LiBeP的磁电性质调控[J]. 材料导报, 2021, 35(10): 10013-10016.
[13] 孙强, 黄苏起, 蔡著文, 党卫东, 吴晓春. 两种热冲压模具用钢的抗拉毛性能[J]. 材料导报, 2021, 35(10): 10152-10157.
[14] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[15] 查林. D3-C32X2(X=H, Cl)的电子结构、核磁共振及振动光谱理论研究[J]. 材料导报, 2020, 34(Z1): 103-106.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed