Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16099-16103    https://doi.org/10.11896/cldb.20080088
  金属与金属基复合材料 |
退火工艺对冷轧中锰中铝低密度钢组织与性能的影响
章小峰1,2, 李家星2, 万亚雄2, 武学俊2, 黄贞益2
1 安徽工业大学,冶金工程与资源综合利用安徽省重点实验室,马鞍山 243002;
2 安徽工业大学冶金工程学院,马鞍山 243002
Effect of Annealing Process on Microstructure and Properties of Cold Rolled Medium Manganese Medium Aluminum Low Density Steel
ZHANG Xiaofeng1,2, LI Jiaxing2, WAN Yaxiong2, WU Xuejun2, HUANG Zhenyi2
1 Anhui Province Key Laboratory of Metallurgical Engineering & Resources Recycling,Anhui University of Technology, Ma'anshan 243002, China;
2 School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, China
下载:  全 文 ( PDF ) ( 3238KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢铁材料的轻量化、增强增韧是目前先进金属材料的重点研究方向。在钢材固有合金元素的基础上,通过添加一些增强其性能的元素及低密度元素等,可以显著改善钢材的综合性能,并降低零件质量。随着汽车工业的快速发展,轻量化汽车用钢的研发和应用越来越深入和广泛。目前,Fe-Mn-Al-C系低密度钢主要借鉴了中/高锰钢成分设计、热处理工艺、组织性能调控的研究思路,形成性能优异、成本合理的高强韧性钢。本工作针对中锰中铝低密度钢(12.4%Mn,4.7%Al,0.1%C(均为质量分数,下同))的成分特点,通过对冷轧试样在Ac1Ac3附近进行退火处理,调控基体相稳定性和组织构成。结果表明:γ奥氏体稳定性与原始组织形态、退火条件和拉伸应力有很大的关联,其组织转变遵从γ奥氏体→ε马氏体→α'马氏体规律;在850 ℃退火、保温15 min条件下,获得了抗拉强度、延伸率分别为854 MPa、44.3%,强塑积为37.8 GPa·%的优异性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章小峰
李家星
万亚雄
武学俊
黄贞益
关键词:  低密度钢  退火工艺  冷轧  奥氏体稳定性  强韧性机制    
Abstract: Lightweight, strengthening and toughening of iron and steel materials are the key research directions of advanced metal materials. Based on the inherent alloy elements of steel, the comprehensive properties of steel can be improved and the weight of parts can be reduced by adding some strengthening elements and low density elements. With the rapid development of automobile industry, the development and application of lightweight automobile steel are more and more extensive. At present, Fe-Mn-Al-C low density steel mainly uses for reference the research ideas of composition design, heat treatment process, microstructure and properties controlling of medium/high manganese steel to form high strength and toughness steel with excellent performance and reasonable cost. According to the composition characteristics of medium manganese medium aluminum low density steel (12.4wt% Mn, 4.7wt% Al, 0.1wt% C), the stability and structure of the matrix were controlled by annealing the cold rolled samples near Ac1 and Ac3. The results show that the austenite stability is closely related to the original microstructure, annealing condition and tensile stress, and the transformation law follows the of austenite → ε-martensite → α' martensite, the excellent properties of tensile strength and elongation of 854 MPa, 44.3% and strength plastic product of 37.8 GPa·% are obtained after annealing at 850 ℃ for 15 min.
Key words:  low-density steel    annealing process    cold rolling    austenite stability    mechanism of strength and toughness
                    发布日期:  2021-09-07
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51674004)
通讯作者:  egzxf@ahut.edu.cn   
作者简介:  章小峰,安徽工业大学冶金工程学院副教授、硕士研究生导师。1998年本科毕业于武汉科技大学,2008年7月在华中科技大学材料加工工程专业取得博士学位,同年8月到安徽工业大学任职。任职期间,于2013—2016年在南京理工大学进行博士后研究工作。主要从事先进汽车用钢材料组织性能控制方面的研究工作。近年来,在先进钢铁材料领域发表论文30余篇。
引用本文:    
章小峰, 李家星, 万亚雄, 武学俊, 黄贞益. 退火工艺对冷轧中锰中铝低密度钢组织与性能的影响[J]. 材料导报, 2021, 35(16): 16099-16103.
ZHANG Xiaofeng, LI Jiaxing, WAN Yaxiong, WU Xuejun, HUANG Zhenyi. Effect of Annealing Process on Microstructure and Properties of Cold Rolled Medium Manganese Medium Aluminum Low Density Steel. Materials Reports, 2021, 35(16): 16099-16103.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080088  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16099
1 Mishra G, Chandan A K, Kundu S. Materials Science & Engineering A, 2017, 701,319.
2 Sutou Yuji, Kamiya Naohide, Umino Reiko, et al. ISIJ International, 2010, 50(6),893.
3 Gutierrez-Urrutia I, Raabe D. Scripta Materialia, 2013, 68,343.
4 Fischer F D, Reisner G, Werner E, et al. International Journal of Plasticity, 2000, 16,723.
5 Kang J, Li Y J, Wang X H, et al. Materials Science & Engineering A, 2019, 742,464.
6 Hong Seokmin, Lee Junghoon, Lee Byeong-Joo, et al. Materials Science & Engineering A, 2013, 587,85.
7 Gutierrez-Urrutia I, Raabe D. Scripta Materialia, 2013, 69,53.
8 Yoo J D, Hwang S W, Park K T. Metallurgical and Materials Transactions A, 2009, 40, 1520.
9 Christian Haase, Christoffer Zehnder, Tobias Ingendahl, et al. Acta Materialia, 2017, 122,332.
10 Zhang Xiaofeng, Yang Hao, Leng Deping, et al. Journal of Iron and Steel Research, International, 2016, 23(9), 963.
11 Frommeyer G, Brüx U. Steel Research International, 2006, 77,627.
12 Welsch E, Ponge D, Hafez Haghighat S M, et al. Acta Materialia, 2016, 116,188.
13 Kim Jinkyung, Lee Seok-Jae, Cooman Bruno. Scripta Materialia, 2011, 65, 363.
14 Jonathan Emo, Philippe Maugis, Astrid Perlade. Computational Materials Science, 2016, 125,206.
15 Sohn Seoksu, Song Hyejin, Suh Byeongchan, et al. Acta Materialia, 2015, 96, 301.
16 Yang Fuqiang, Song Renbo, Li Yaping, et al.Chinese Journal of Mate-rials Research, 2015,29(2),108(in Chinese).
杨富强,宋仁伯,李亚萍,等.材料研究学报,2015,29(2),108.
17 Yang Lifang,Wei Huanjun,Sun Li, et al.Iron and Steel, 2019, 54(11),80(in Chinese).
杨丽芳,魏焕君,孙力,等.钢铁,2019,54(11),80.
18 Wang Baibing, Liu Yingkai, Liu Rendong, et al.Shanghai Metals,2020,42(2),14(in Chinese).
王白冰,刘营凯,刘仁东,等.上海金属,2020,42(2),14
19 Zuzao I, Hallstedt B, Lindahl B, et al. JOM, 2014, 66,1747.
20 Sohn Seoksu, Hong Seokmin, Lee Junghoon, et al. Acta Materialia, 2015,100, 39.
21 Wang C Y, Shi J, Cao W Q, et al. Materials Science & Engineering A, 2010, 527,3442.
22 Wang Lina,Yang Ping, Li Kai, et al. Acta Metallurgica Sinica, 2018, 54(12),1756(in Chinese).
王丽娜,杨平,李凯,等. 金属学报, 2018, 54(12),1756.
23 Qi X Y, Du L X, Hu J, et al. Materials Science & Engineering A, 2018, 718,477.
24 Cheng Weichun, Cheng Chihyao, Hsu Chiawei, et al. Materials Science & Engineering A, 2015, 642,128.
25 Li J, Yang H Y, Yang P. Materials Letters, 2014, 134,180.
26 Hu Z P, Xu Y B, Zou Y, et al. Materials Science & Engineering A, 2018, 720,1.
[1] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[2] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[3] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[4] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[5] 马涛, 李慧蓉, 高建新, 王旭峰, 宋宏伟, 李运刚. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 23154-23164.
[6] 马涛, 李慧蓉, 高建新, 宋宏伟, 李欣, 李运刚. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 11153-11161.
[7] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[8] 胡彬, 易幼平, 黄始全, 何海林, 王并乡, 郭万富. 冷轧变形量对2A14铝合金高筒件时效析出行为及力学性能的影响[J]. 材料导报, 2019, 33(24): 4122-4125.
[9] 章小峰, 李家星, 万亚雄, 武学俊, 黄贞益. 低密度钢中有序析出相的研究进展[J]. 材料导报, 2019, 33(23): 3979-3989.
[10] 刘春泉,彭其春,薛正良,吴腾. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581.
[11] 谢红梅, 蒋斌, 彭程, 潘复生. SiO2/MoS2复合纳米基润滑油在镁合金冷轧中的摩擦学性能及润滑机理[J]. 《材料导报》期刊社, 2018, 32(8): 1276-1282.
[12] 李安敏,史君佐,谢明款. 高熵合金力学性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 461-466.
[13] 章小峰, 杨浩, 李家星, 阚中伟, 施琦, 黄贞益. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型[J]. 材料导报, 2018, 32(16): 2859-2864.
[14] 唐兴昌, 张文娟, 王向飞, 张志坚. 1 200 MPa级冷轧双相钢组织性能及其热塑性[J]. 材料导报, 2018, 32(16): 2870-2875.
[15] 周双双, 刘希琴, 刘子利, 侯志国, 田青超. 正火工艺对冷轧态低合金低温钢组织及拉伸性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 98-104.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed