Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23162-23170    https://doi.org/10.11896/cldb.20060264
  高分子与聚合物基复合材料 |
提高PVDF基有机-无机柔性复合膜储能密度的研究新进展
张静茹, 张志昂, 韩笑, 房蕊, 徐若歆, 赵丽丽
西北大学信息科学与技术学院,西安710127
Research Progress in Improving the Energy Storage Density of PVDF-based Organic-Inorganic Flexible Composite Films
ZHANG Jingru, ZHANG Zhi'ang, HAN Xiao, FANG Rui, XU Ruoxin, ZHAO Lili
School of Information Science & Technology, Northwest University, Xi'an 710127, China
下载:  全 文 ( PDF ) ( 9323KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着器件小型化与多功能化的蓬勃发展,柔性储能装置在电子电力系统中的地位日益突出,电介质电容器由于寿命长、功率密度高,深受人们青睐,但是低的储能密度阻碍其广泛应用。有机-无机复合材料将有机介质的柔韧性和高击穿场强与无机介质的高介电常数相结合,是柔性储能材料的一大关注焦点,特别是基于聚偏氟乙烯(PVDF)的有机-无机复合储能介质受到广泛关注。首先,就无机填料类型而言,PVDF基有机-无机复合介质中无机填料的种类有陶瓷粉体、半导体粉体与导体粉体。陶瓷粉体填料的介电常数高、损耗小,但是与PVDF的相容性差,一般需要通过表面改性来改善其与有机介质的相容性;半导体粉体与导体粉体作为PVDF的填料可以显著提升复合材料的介电常数,从而提升其储能密度,但是填料添加量略大容易形成导电通路致使介电储能材料制备失败。其次,就无机填料的形貌而言,同一种材料不同的形貌对复合材料的储能性能有不同影响。零维纳米颗粒在有机基质中易于形成均匀分散的体系,一般随纳米颗粒添加量的增加复合材料的储能密度有一极值,且填料颗粒尺寸减小更有利于电场均匀分布,从而可以进一步提高复合材料的击穿场强和储能密度;采用一维纳米纤维和二维纳米片填料有利于增强复合材料的极化、改变电场的击穿路径,从而增强复合材料的击穿强度,提高其储能密度。最后,采用层状结构设计对提高复合材料的储能密度和储能效率十分有效。单层结构的复合材料以牺牲其击穿强度来提高介电常数,储能密度的提升有限;双层、三层和多层结构将高介电常数的极化层和高击穿强度的绝缘层相堆叠,可同时实现高介电常数与高击穿强度,有效促进复合材料储能密度的提升。有机-无机复合储能材料的研究对解决柔性设备的储能问题十分重要,未来需要寻找更优的复合体系,降低成本,提高工艺可控性,开发适合大规模生产的工艺流程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张静茹
张志昂
韩笑
房蕊
徐若歆
赵丽丽
关键词:  电介质  介电常数  储能密度  击穿强度  复合材料    
Abstract: With the development of miniaturized and multifunctional devices, flexible energy storage devices play an important role in electronic power systems. Dielectric capacitors have attracted immense interest due to their long cycle life and high-power density. However, low energy density limits their wide applications. Organic-inorganic composite,one of the most important flexible energy storage materials, combines the flexibility of organic dielectrics with the high dielectric constant of inorganic dielectrics. Particularly, polyvinylidene fluoride (PVDF)-based organic-inorganic composite energy storage dielectrics have received extensive attention. Firstly, in terms of the types of inorganic fillers, the inorganic fillers in PVDF-based composite materials include ceramic powders, semiconductor powders and conductor powders. Ceramic fillers have high dielectric constant, low dielectric loss, but poor compatibility with PVDF, therefore, the interface compatibility generally needs be improved by surface mo-dification. Semiconductor and conductor fillers can significantly enhance the dielectric constant of PVDF-based composites, thereby improving energy density. However, conductive path is easily formed by an improper conductor filler adding amount, leading to the preparation failure of dielectric energy storage materials. Secondly, as to the filler morphology, different morphologies for the one filler material have different effects on the energy storage of composites. 0D nanoparticles facilitate to form a uniform dispersed system in polymer matrix. Generally, there is a maximum value of the energy storage density of composites with the increased filler amount. With the decrease of particle size, the electric field distribution is more uniform, which can further improve the breakdown strength and the energy storage density of composites. The use of 1D nanofibers and 2D nanosheets is beneficial to increase polarization, and the breakdown strength of composite can be enhanced by varying breakdown path in electric field, thus improving energy storage density. Eventually, the layer design of composite structure is very effective to improve energy storage density and energy storage efficiency. Monolayer composite has to sacrifice breakdown strength to increase its dielectric constant, resulting in a limited improvement of energy storage density. Bilayer, sandwich and multilayer structure can simultaneously realize high dielectric constant and high breakdown strength depending on the stack of the high polarization layer with high dielectric constant and the insulation layer with high breakdown strength, which effectively improves energy storage density. It's significant for energy storage of flexible devices to research organic-inorga-nic composite. In the future we need to develop some composites with high energy storage density and low cost. The improvement of process controllability and development of technological process are also necessary to mass production.
Key words:  dielectric    dielectric constant    energy storage density    breakdown strength    composite material
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TB33  
基金资助: 陕西省自然科学基础研究计划(2021JZ-44)
通讯作者:  zhaolili@nwu.edu.cn   
作者简介:  张静茹,2019年6月毕业于西北大学,获得工学学士学位。现为西北大学信息科学与技术学院硕士研究生,在赵丽丽教授的指导下进行研究。目前主要研究领域为有机-无机复合柔性介电储能材料。
赵丽丽,西北大学信息科学与技术学院教授,硕士研究生导师。主要从事薄膜材料与器件、纳米功能材料与器件、新型电子陶瓷与器件领域的研究工作,曾在美国佛罗里达大学和北卡莱罗纳州立大学留学。先后完成国家自然科学基金项目、陕西省科技发展计划项目、陕西省自然科学基金项目等10余项;在国内外学术期刊发表学术论文60余篇,获国家专利授权10项。
引用本文:    
张静茹, 张志昂, 韩笑, 房蕊, 徐若歆, 赵丽丽. 提高PVDF基有机-无机柔性复合膜储能密度的研究新进展[J]. 材料导报, 2021, 35(23): 23162-23170.
ZHANG Jingru, ZHANG Zhi'ang, HAN Xiao, FANG Rui, XU Ruoxin, ZHAO Lili. Research Progress in Improving the Energy Storage Density of PVDF-based Organic-Inorganic Flexible Composite Films. Materials Reports, 2021, 35(23): 23162-23170.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060264  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23162
1 Liang Z, Ma C, Shen L, et al. Nano Energy, 2019, 57,519.
2 Niu Y, Bai Y, Yu K, et al. ACS Applied Materials & Interfaces, 2015, 7(43), 24168.
3 Diao C L, Dong L, Yang Y, et al. Materials Reports A:Review Papers, 2019, 33(12), 3921(in Chinese).
刁春丽, 董乐, 杨毅,等. 材料导报:综述篇, 2019, 33(12), 3921.
4 Bi K, Bi M, Hao Y, et al. Nano Energy, 2018, 51, 513.
5 Diao C, Liu H, Lou G, et al. Journal of Alloys and Compounds, 2019, 781,378.
6 Sun Z X, Wang Z, Tian Y, et al. Advanced Electronic Materials, 2020, 6(1), 1900698.
7 Shen Y, Shen D S, Zhang X, et al. Journal of Materials Chemistry A, 2016, 4(21), 8359.
8 Cha J W, Zheng M S, Dang Z M. High Voltage Engineering, 2017, 43(7), 2194(in Chinese).
查俊伟, 郑明胜, 党智敏.高电压技术, 2017, 43(7), 2194.
9 Wen L, Chen J, Liang J, et al. National Science Review, 2017, 4(1), 20.
10 Jiang J, Shen Z, Qian J, et al. Nano Energy, 2019, 62, 220.
11 Chen Q, Shen Y, Zhang S H, et al. Annual Review Materials Science, 2015, 45, 433.
12 Xia W M, Xu Z, Wen F, et al. Ceramics International, 2012, 38(2), 1071.
13 Hao Y N, Wang X H, Bi K, et al. Nano Energy, 2017, 31, 49.
14 Liu S H, Xue S X, Zhang W Q, et al. Ceramics International, 2014, 40(10), 15633.
15 Zhao Q, Yang L, Chen K, et al. Nano Energy, 2019, 65, 104007.
16 Yang Y, Li Z, Ji W, et al. Composites Part A, Applied Science and Manufacturing, 2018, 104, 24.
17 Silakaew Kanyapak, Thongbai Prasit. Applied Surface Science, 2019, 492, 683.
18 Luo S B, Yu S H, Sun R, et al. ACS Applied Materials & Interfaces, 2014, 6(1), 176.
19 Guan S, Li H, Zhao S, et al. Composites Science and Technology, 2018, 158, 79.
20 Wang G, Huang X, Jiang P. ACS Applied Materials & Interfaces, 2017, 9(8), 7547.
21 Feng Y, Zhou Y, Zhang T, et al. Energy Storage Materials, 2020, 25, 180.
22 Tang H X, Lin Y R, Clark A, et al. Nanotechnology, 2011, 22(1), 015702.
23 Jin Y, Xia N, Gerhardt R A. Nano Energy, 2016, 30, 407.
24 Niu Y J, Yu K, Bai Y Y, et al. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2015, 62(1), 108.
25 Hu G X, Gao F, Kong J, et al. Journal of Alloys and Compounds, 2015, 619, 686.
26 Bi M H, Hao Y A, Zhang J M, et al. Nanoscale, 2017, 9(42), 16386.
27 Wang Y, Hou Y, Deng Y. Composites Science and Technology, 2017, 145, 71.
28 Xie L, Huang X, Huang Y, et al. The Journal of Physical Chemistry C, 2013, 117(44), 22525.
29 Gu Y T, Liu H B, Ma H H, et al. Insulating Materials, 2015, 48(11), 1(in Chinese).
顾逸韬, 刘宏波, 马海华,等.绝缘材料, 2015, 48(11), 1.
30 Pan Z, Yao L, Zhai J, et al. Composites Science and Technology, 2017, 147, 30.
31 Hu P, Gao S, Zhang Y, et al. Composites Science and Technology, 2018, 156, 109.
32 He D L, Wang Y, Chen X Q, et al. Composites Part A-Applied Science and Manufacturing, 2017, 93, 137.
33 Zhu Y, Yuan S, Lu C, et al. Ceramics International, 2018, 44(16), 19330.
34 Hu P, Jia Z, Shen Z, et al. Applied Surface Science, 2018, 441, 824.
35 Liu S, Wang J, Wang J, et al. Materials Letters, 2017, 189, 176.
36 Yang L, Zhao Q, Chen K, et al. Composites Part A, Applied Science and Manufacturing, 2020, 132, 105820.
37 Ji W, Deng H, Sun C, et al. Composites Science and Technology, 2019, 172, 117.
38 Xu Z P, Qiang H, Chen Y. Materials Letters, 2020, 259, 126894.
39 Wang J, Hu J T, Yang L, et al. Journal of Materiomics, 2018, 4(1), 44.
40 He L, Wang J, Yang Z, et al. Functional Materials Letters, 2019, 12(3), 1950034.
41 Yang C, Hao S J, Dai S L, et al. Carbon, 2017, 117, 301.
42 Zhang Y, Zhang C, Feng Y, et al. Nano Energy, 2019, 66, 104195.
43 Li Y X, Xie J L, Chu Z M, et al. Advanced Materials Research, 2013, 833, 365.
44 Li J J, Claude J, Norena-Franco L E, et al. Chemistry of Materials, 2008, 20(20), 6304.
45 Tang H, Zhou Z, Sodano H A. ACS Applied Materials & Interfaces, 2014, 6(8), 5450.
46 Zhang X, Shen Y, Zhang Q, et al. Advanced Materials, 2015, 27(5), 819.
47 Liu F, Li Q, Li Z, et al. Composites Part A, Applied Science and Manufacturing, 2018, 109, 597.
48 Li Z, Liu F, Yang G, et al. Composites Science and Technology, 2018, 164, 214.
49 Guo M, Jiang J, Shen Z, et al. Materials Today, 2019, 29, 49.
50 Shen Z H, Wang J J, Lin Y, et al. Advanced Materials, 2018, 30(2), 29164775.
51 Fillery S P, Koerner H, Drummy L, et al. ACS Applied Materials & Interfaces, 2012, 4(3), 1388.
52 Li Q, Zhang G Z, Liu F H, et al. Energy & Environmental Science, 2015, 8(3), 922.
53 Ghosh Sujoy Kumar, Rahman Wahida, Middya Tapas Ranjan, et al. Nanotechnology, 2016, 27(21), 215401.
54 Wen R M, Guo J M, Zhao C L, et al. Advanced Materials Interfaces, 2018, 5(3), 1701088.
55 Liu S, Wang J, Hao H, et al. Ceramics International, 2018, 44(18), 22850.
56 Pan Z B, Yao L M, Zhai J W, et al. ACS Applied Materials & Interfaces, 2017, 9(4), 4024.
57 Yao M W, You S Y, Peng Y. Ceramics International, 2017, 43(3), 3127.
58 Liu S H, Wang J, Shen B, et al. Journal of Alloys and Compounds, 2017, 696, 136.
59 Lin X, Hu P H, Jia Z Y, et al. Journal of Materials Chemistry A, 2016, 4(6), 2314.
60 Xie B, Zhang Q, Zhang L, et al. Nano Energy, 2018, 54, 437.
61 Bai H, Ge G, He X, et al. Composites Science and Technology, 2020, 195, 108209.
62 Pan Z, Liu B, Zhai J, et al. Nano Energy, 2017, 40, 587.
63 Li Z, Liu F, Li H, et al. Ceramics International, 2019, 45(7), 8216.
64 Wang Y, Li Y, Wang L, et al. Energy Storage Materials, 2020, 24, 626.
65 Wang Y F, Cui J, Yuan Q B, et al. Advanced Materials, 2015, 27(42), 6658.
66 Feng Y, Li J L, Li W L, et al. Composites Part A, Applied Science and Manufacturing, 2019, 125, 105524.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[3] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[4] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[5] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[6] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[7] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[8] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[9] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[10] 张奇, 张震东, 任杰. 正六边形玻璃纤维增强复合材料多胞结构准静态压缩试验研究[J]. 材料导报, 2021, 35(z2): 573-578.
[11] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[12] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[13] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[14] 于冬雪, 于化杰, 黎红兵, 梁爽. FRP建筑材料的结构性能及应用综述[J]. 材料导报, 2021, 35(z2): 660-66.
[15] 胡炜杰, 钟明建, 杨营, 盘茂森, 任清刚. 碳纤维复合材料的回收与再利用技术[J]. 材料导报, 2021, 35(z2): 627-633.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed