Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17150-17162    https://doi.org/10.11896/cldb.20030164
  无机非金属及其复合材料 |
水合盐热化学储热材料的研究概述
杨慧1, 童莉葛1,2, 尹少武1,2, 王立1,2, 汉京晓3, 唐志伟4, 丁玉龙5
1 北京科技大学能源与环境工程学院,北京 100083
2 冶金工业节能减排北京市重点实验室,北京 100083
3 北京市热力集团有限责任公司,北京 100028
4 北京工业大学环能学院,北京 100022
5 英国伯明翰大学储能中心,英国 伯明翰 B15 2TT
A Review on the Salt Hydrate Thermochemical Heat Storage Materials
YANG Hui1, TONG Lige1,2, YIN Shaowu1,2, WANG Li1,2, HAN Jingxiao3, TANG Zhiwei4, DING Yulong5
1 School of Energy and Environmental Engineering, Beijing University of Science and Technology, Beijing 100083, China
2 Beijing Key Laboratory of Energy Conservation and Emission Reduction in Metallurgical Industry, Beijing 100083, China
3 Beijing District Heating Group Co., Ltd., Beijing 100028,China
4 School of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, China
5 Birmingham Center of Energy Storage, University of Birmingham, Birmingham B15 2TT, UK
下载:  全 文 ( PDF ) ( 10269KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热化学储热材料是通过化学反应过程中化学键的破坏与重组来实现热能的储存与释放。与其他储热材料相比,热化学储热材料具有储热密度高、长周期稳定储热等优势。水合盐热化学储热材料可以高效储存太阳能和工业余热等中低温热源,在热化学储热领域具有很高的关注度。
纯水合盐材料(如LiCl、LiBr、CaCl2)液解相对湿度较低,水合(脱水)反应包含固-气水合(脱水)反应、气-液-固三相液解(结晶)、液-气吸收三个过程,这种循环过程可显著提高水合盐的储热密度。若吸水量控制不佳则易引起严重的传质和腐蚀问题。对于液解相对湿度较高、储热密度较高的水合盐,如SrBr2和MgSO4,其传热性能差、孔隙率和渗透率低。将水合盐嵌入多孔基质中形成多孔基质水合盐复合储热材料可进一步强化其传热,并同时解决水合盐的潮解结块问题。近年来,人们对多孔基质水合盐复合储热材料进行了深入研究,获得了多种储热密度高、具有良好循环稳定性的复合储热材料。
多孔基质水合盐复合储热材料设计过程中,多孔基质的选择尤为重要。目前研究的热点主要集中于膨胀石墨、沸石、蛭石、硅胶、活性氧化硅等。将LiCl和膨胀石墨(EG)制成的复合材料用于10 kWh的低温热化学吸附储热装置中,系统的储热密度高达3 142 kJ/kg;以活性氧化铝(AA)为多孔基质、LiCl为嵌入盐制得了一种新型复合材料(AL),其中AL25(盐含量为14.68%,质量分数)复合材料的结构稳定,储热性能最优,具有最高的储热密度为1 041.5 kJ/kg,充热温度为120 ℃; 在不使用多孔基质的条件下,MgCl2·MgSO4二元水合盐在超过50次循环实验后,仍保持良好的性能,说明其具有非常高的循环稳定性。
本文基于反应动力学、平衡吸附量和化学反应平衡等理论,从传热和传质性能、循环稳定性和储热密度等方面综述了水合盐热化学储热材料的研究成果,探讨了水合盐热化学储热材料存在的问题,以期为开发高效水合盐热化学储热材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨慧
童莉葛
尹少武
王立
汉京晓
唐志伟
丁玉龙
关键词:  热化学储热  水合盐  多孔基质  复合材料  储热密度    
Abstract: Thermochemical heat storage materials achieve the storage and release of thermal energy by taking advantage of the destruction and recombination of chemical bonds in the process of chemical reactions. Compared with other heat storage materials, thermochemical heat storage materials exhibit high heat storage density as well as feasibility for long-duration heat storage. As one of the research focuses in the field of thermochemical heat storage, the advantage of salt hydrates for medium-low temperature thermochemical heat storage have been put forth sufficiently.
Hydration(dehydration) reaction of pure salt hydrates, such as LiCl, LiBr, CaCl2 with low deliquescence relative humidity, including solid-gas hydration (dehydration), gas-liquid-solid deliquescence(crystallization), and liquid-gas adsorption. The cycle features make it possible to obtain a remarkably higher heat storage density. Some materials that fail to control water absorption appropriately have shown some drawbacks, especially mass transfer limitation within the materials and corrosion issue of metal components in storage units. On the other hand, salt hydrates such as SrBr2and MgSO4 possess high deliquescence relative humidity and expectable heat storage density, but poor heat transfer performance, as well as low porosity and permeability accompany them. The porous matrix salt hydrate composite materials are employed to enhance heat transfer and solve the deliquescence and agglomeration issue. In recent years, a vast scope of theoretical studies and experiments have to be made on the porous matrix salt hydrate composite materials, and lots of composites with high heat storage density and good cycle stability were obtained.
Porous matrix is particularly important in the design of porous matrix salt hydrate composite materials. At present, expanded graphite, zeolite, vermiculite, silica gel and activated alumina are widely concerned. The composite materials were formed from LiCl with the addition of expanded graphite, which were applied in a thermochemical energy storage prototype on the scale of 10 kWh. The heat storage density can reach 3 142 kJ/kg. High-stable activated alumina/LiCl composites can obtain the highest heat storage density, which was as high as 1 041.5 kJ/kg with a charging temperature of 120 ℃. The best cycle stability with almost no decrease over 55 cycles was determined for a mixture of MgCl2·MgSO4 dou-ble salt hydrates without porous matrix.
In this paper, previous research process on the salt hydrate thermochemical heat storage materials is reviewed including heat and mass transfer performance, cyclic stability and heat storage density based on the theory of reaction kinetic, equilibrium adsorption capacity and chemical reaction equilibrium. Besides, we also pay attention to the problems existing in the salt hydrate thermochemical heat storage materials, which are expected to provide reference for the optimization design of promising candidates salt hydrate thermochemical heat storage materials.
Key words:  thermochemical heat storage    salt hydrate    porous matrix    composite material    heat storage density
                    发布日期:  2021-09-26
ZTFLH:  TB34  
通讯作者:  tonglige@me.ustb.edu.cn   
作者简介:  杨慧,2019年6月毕业于北京建筑大学,获得硕士学位。现为北京科技大学能源与环境工程学院博士研究生,在丁玉龙教授、童莉葛教授的指导下进行研究。目前主要研究领域为水合盐热化学储能技术。
童莉葛,北京科技大学能源与环境工程学院教授、博士研究生导师。分别于1995年6月、1998年4月、2004年6月在北京科技大学取得热能工程专业的学士学位、硕士学位、博士学位。主要从事能源管理、储能、传热传质强化、制冷与低温方面的研究。
引用本文:    
杨慧, 童莉葛, 尹少武, 王立, 汉京晓, 唐志伟, 丁玉龙. 水合盐热化学储热材料的研究概述[J]. 材料导报, 2021, 35(17): 17150-17162.
YANG Hui, TONG Lige, YIN Shaowu, WANG Li, HAN Jingxiao, TANG Zhiwei, DING Yulong. A Review on the Salt Hydrate Thermochemical Heat Storage Materials. Materials Reports, 2021, 35(17): 17150-17162.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030164  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17150
1 The Critical Role of Buildings-Perspectives for the Clean Energy Transition. International Energy Agency, 2019.
2 Kuznik F, Johannes K, Obrecht C, et al. Renewable and Sustainable Energy Reviews, 2018, 94, 576.
3 Devrim A, Sean P C, Saffa R. Renewable and Sustainable Energy Reviews, 2015, 41, 356.
4 Rammelberg H U, Osterland T, Priehs B, et al. Solar Energy, 2016, 136, 571.
5 Gil A, Medrano M, Martorell I, et al. Renewable and Sustainable Energy Reviews, 2010, 14(1), 31.
6 Hasnain S M. Energy Conversion and Management, 1998, 39(11), 127.
7 Bedin H A, Rosen M A. The Open Renewable Energy Journal, 2011, 4, 42.
8 Lizana J, Chacartegui R, Barrios-Padura A, et al. Applied Energy, 2017, 203, 219.
9 Solé A, Fontanet X, Barreneche C, et al. Solar Energy, 2013, 97, 398.
10 Fopah-Lele A, Kuznik F, Rammelberg H U. Applied Energy, 2015, 154, 447.
11 Clark R, Mehrabadi A, Farid M. Journal of Energy Storage, 2020, 27, 101145.
12 Solé A, Martorell I, Cabeza L F. Renewable and Sustainable Energy Reviews, 2015, 47, 386.
13 Donkers P A J, Pel L, Adan O C G. Journal of Energy Storage, 2016, 5, 25.
14 Sorin M, Spinner B, Stitou D. Chemicl Engineering Science, 2002, 57, 4243.
15 Yan T, Wang R Z, Li T X, et al. Renewable and Sustainable Energy Reviews, 2015, 43, 13.
16 Zhang Y N, Wang R Z. Energy Storage Materials, 2020, 27, 352.
17 Scapino L, Zondag H A, Bael J V, et al. Applied Energy, 2017, 190, 920.
18 Gu Q Z. Numerical simulation and experimental study of magnesium-magnesium hydride themochemical heat storage system. Master’s Thesis, Shanghai Jiaotong University, China, 2013(in Chinese).
顾清之. 镁-氢化镁热化学蓄热系统数值模拟和实验研究. 硕士学位论文,上海交通大学,2013.
19 Donkers P A J, Sögütoglu L C, Huinink H P, et al. Applied Energy, 2017, 199, 45.
20 Michel B, Mazet N, Neveu P. Applied Energy, 2014, 129, 177.
21 Michel B, Neveu P, Mazet N. Energy, 2014, 72, 702.
22 Gordeeva L G, Tokarev M M, Aristov Y I. Theoretical Foundations of Chemical Engineering, 2018, 52, 195.
23 Wen P C, Wei G, Cui X Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62, 192.
24 Essen V, Gores J C, Bleijendaal L P J, et al. In: The Third International Conference of Energy Sustainability. Stockholm, 2009, pp. 19.
25 Rammelberg H U, Schmidt T, Ruck W. Energy Procedia, 2012, 30, 362.
26 Ferchaud C J, Zondag H A, de Boer R. In: International Symposium on Innovative Materials for Processes in Energy Systems. Fukuoka, Japan, 2013, pp. 4.
27 Zhao Y J, Wang R Z, Zhang Y N, et al. Energy, 2016, 115, 129.
28 La Iglesia A. Estudos Geológicos, 2009, 65, 109.
29 Richter M, Habermann E, Siebecke E, et al. Thermochimica Acta, 2018, 659, 136.
30 Xu J X, Li T X, Chao J W, et al. Energy, 2019, 185, 1131.
31 Trausel F, de Jong A J, Cuypers R. Energy Procedia, 2014, 48, 447.
32 Greenspan L. Journal of Research of the National Bureau of Standards, 1977, 81(1), 89.
33 Wang J Y, Wang R Z, Wang L W. Applied Thermal Engineering, 2016, 100, 893.
34 Yu N, Wang R Z, Lu Z S, et al. Energy, 2014, 67, 468.
35 Cabeza L F, Sole A, Barreneche C. Renewable Energy, 2017, 110, 3.
36 Kirsh Y, Yariv S, Shoval S. Journal of Thermal Analysis and Calorimetry, 1987, 32(1), 393.
37 Huang Q Z, Lu G M, Wang J, et al. Metallurgical and Materials Transa-ctions A—Physical Metallurgy and Materials Science,2010,41(5),1059.
38 Kashani-Nejad S, Ng K W, Harris R. Metallurgical and Materials Tran-sactions B—Process Metallurgy and Materials Processing Science, 2005, 36, 153.
39 Huang Q Z, Lu G M, Wang J, et al. Journal of Analytical and Applied Pyrolysis, 2011, 91, 159.
40 Gutierrez A, Gil A, Rodríguez-Aseguinolaza J, et al. Renewable and Sustainable Energy Reviews, 2013, 59, 763.
41 Mamani V, Gutiérrez A, Ushak S. Solar Energy Materials and Solar Cells, 2018, 176, 346.
42 Herbert Z, Benjamin K, Simon S, et al. Applied Energy, 2013, 109(1), 360.
43 Pathak A D, Nedea S, van Duin A C T, et al. Physical Chemistry Chemical Physics, 2016, 18(23), 15838.
44 Kipouros G J, Sadoway D R. Journal of Light Metals, 2001, 1(2), 111.
45 De B R, Haije W, Veldhuis J. Thermochimica Acta, 2002, 395(1), 3.
46 Sögütoglu L C, Donkers P A J, Fischer H R, et al. Applied Energy, 2018, 215, 159.
47 Chipera S J, Vaniman D T. Geochimica Et Cosmochimica Acta, 2007, 71, 241.
48 Steiger M, Linnow K, Juling H, et al. Crystal Growth & Design, 2008, 8(1), 336.
49 Archer D A, Rard J A. Jounral of Chemical Engineering Data, 1998, 43, 791.
50 Chou I M, Seal R R. Astrobiology, 2003, 3, 619.
51 N’Tsoukpoe K E, Schmidt T, Rammelberg H U, et al. Applied Energy, 2014, 124, 1.
52 Fopah-Lele A, Tamba J G. Solar Energy Materials Solar Cells, 2017, 164, 175.
53 Marias F, Neveu P, Tanguy G, et al. Energy, 2014, 66, 757.
54 Kleiner F, Posern K, Osburg A. Applied Thermal Engineering, 2017, 113, 1189.
55 Lele A F, N’Tsoukpoe K E, Osterland T, et al. Applied Thermal Engineering, 2015, 89, 916.
56 N'Tsoukpoe K E, Restuccia G, Schmidt T, et al. Energy, 2014, 77, 983.
57 Yu N, Wang R Z, Wang L W. Progress in Energy and Combustion Science, 2013, 39(5), 489.
58 Restuccia G, Freni A, Maggio G. Applied Thermal Engineering, 2002, 22(6), 619.
59 Mills A, Farid M, Selman J R, et al. Applied Thermal Engineering, 2006, 26(14-15), 1652.
60 Sari A, Karaipekli A. Applied Thermal Engineering, 2007, 27(8-9), 1271.
61 Whiting G, Grondin D, Bennici S, et al. Solar Energy Materials Solar Cells, 2013, 112, 112.
62 Li X, Narayanan S, Michaelis V K, et al. Microporous and Mesoporous Materials, 2015, 201, 151.
63 Zhang Y N, Wang R Z, Li T X. Energy, 2018, 156, 240.
64 Veselovskaya V J, Tokarev M M, Grekova A D, et al. Applied Thermal Engineering, 2012, 37, 87.
65 Xu S Z, Wang R Z, Wang L W. Energy, 2019, 167, 889.
66 Patra A K, Dutta A, Bhaumik A. Journal of Hazardous Materials, 2012, 201-202,170.
67 Mauran S, Lahmidi H, Goetz V. Solar Energy, 2008, 82(7), 623.
68 Yu N, Wang R Z, Lu A S, et al. International Journal of Heat and Mass Transfer, 2015, 84, 660.
69 Zhao Y J, Wang R Z, Li T X, et al. Energy, 2016, 113, 739.
70 Xu C, Yu Z H, Xie Y Y, et al. Applied Thermal Engineering, 2018, 129, 250.
71 Tohidi S H, Ziaie F, Abdolmaleki A. International Journal of Enginee-ring Science, 2009, 22(3), 299.
72 Zhu D, Wu H, Wang S. International Journal of Engineering Science, 2006, 45, 804.
73 Jabbari-Hichri A, Bennici S, Auroux A. Solar Energy Materials Solar Cells, 2015, 140, 351.
74 Zhang Y N, Wang R Z, Zhao Y J, et al. Energy, 2016, 115, 120.
75 Zhang Y N, Wang R Z, Li T X, et al. Energies, 2016, 9(10), 854.
76 Alexandra D, Grekova L G, Aristor Y I,et al. Applied Thermal Enginee-ring, 2017, 124, 1401.
77 Korhammer K, Druske M M, Forpan-Lele A, et al. Applied Energy, 2016, 162, 1462.
[1] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[2] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[3] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[4] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[5] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[6] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[7] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[8] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[9] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[10] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[11] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[12] 武海鹏. 复合材料层合板阻尼性能的预测与分析[J]. 材料导报, 2021, 35(Z1): 617-620.
[13] 李磊, 刘晓莲, 王利媛, 康卫民, 庄旭品. 无机相拓扑结构对有机-无机复合质子交换膜性能的影响综述[J]. 材料导报, 2021, 35(Z1): 621-627.
[14] 谢贵堂, 张均, 姚明, 王宇川, 蒋国昌, 姜志国. 调湿材料的研究与应用现状[J]. 材料导报, 2021, 35(Z1): 634-638.
[15] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed