Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20090160-6    https://doi.org/10.11896/cldb.20090160
  无机非金属及其复合材料 |
利用传统电炉低温烧结致密Si3N4陶瓷
李凌锋, 赵世贤*, 郭昂, 司瑶晨, 王战民*, 王刚
中钢集团洛阳耐火材料研究院有限公司先进耐火材料国家重点实验室,河南 洛阳471039
Dense Si3N4 Ceramics Sintered at Low Temperature in Traditional Electric Furnace
LI Lingfeng, ZHAO Shixian*, GUO Ang, SI Yaochen, WANG Zhanmin*, WANG Gang
State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039, Henan, China
下载:  全 文 ( PDF ) ( 4493KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Si3N4陶瓷具有高硬度、高耐磨以及高抗弯强度等优异特性,常常被应用于冶金、化工以及航空航天等现代化领域。Si3N4的强共价键使其难以致密化,因此热压烧结和气压烧结是目前制备致密Si3N4陶瓷最常见的方法。然而极高的烧结温度以及较大的N2压力需求等极其苛刻的制备条件限制了致密Si3N4陶瓷的基础探索研究和工业化生产应用。因此,本工作提出设计以传统空气电炉作为烧结装置,通过埋碳低温制备致密Si3N4陶瓷,研究该工艺条件下实验用坩埚、填埋Si3N4粉体以及烧结试样的物相变化和微观结构,结果表明:(1)Si3N4的分解使得坩埚表层生成不规则的SiC纤维堆积,较低的氧分压使所埋Si3N4粉体经烧结后仍存在较多Si3N4和少量Si2N2O;(2)烧结后的试样仅表面存在少量Si2N2O,而试样内部并未出现Si2N2O相;(3)1 650 ℃低温烧结后试样致密度达到98%以上,显微组织均匀,且具有良好的性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李凌锋
赵世贤
郭昂
司瑶晨
王战民
王刚
关键词:  Si3N4陶瓷  低温无压烧结  致密化  相变化  性能    
Abstract: Due to its high hardness, high wear resistance and high bending strength, Si3N4 ceramic is widely used in metallurgy, chemical industry, ae-rospace and automotive engines. Hot-pressed sintering and gas pressure sintering are commonly used in the preparation of dense Si3N4 ceramics due to the high strength bonding of Si3N4 which is difficult to be compacted. However, the strict preparation conditions such as high temperature pressure sintering greatly limit the basic research and the industrial application of dense Si3N4 ceramics in many technical fields. Therefore, the preparation of dense Si3N4 ceramics were obtained at lower sintering temperature using traditional air furnace to study the phase changes and microstructures of experimental crucible, Si3N4 powder and sintered sample under the present conditions. The results showed that the decomposition of the Si3N4 caused irregular SiC fiber accumulation on the crucible surface, and much more Si3N4 and a small amount of Si2N2O phase were remained in the buried Si3N4 powder because of the lower oxygen partial pressure. Si2N2O phase were also detected on the surface, but no Si2N2O appeared inside the sintered body. The Si3N4 ceramics sintered at 1 650 ℃ have the relative density over 98% with uniform microtissue and good performance.
Key words:  Si3N4 ceramic    low temperature and pressureless sintering    densification    phase transformation    property
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TQ174  
基金资助: 国家重点研发计划(2017YFB0310300)
通讯作者:  wangzm@lirr.com; andyzhaosx@163.com   
作者简介:  李凌锋,2019年毕业于中钢集团洛阳耐火材料研究院有限公司,获工学硕士学位。同年,任职于中钢集团洛阳耐火材料研究院有限公司先进耐火材料国家重点实验室,主要从事致密氮化硅陶瓷和先进耐火材料的研究。
王战民,教授级高级工程师,博士研究生导师。现任中钢集团洛阳耐火材料研究院有限公司副院长,全国不定形耐火材料学术委员会副主任委员。主要从事不定形耐火材料的研究、开发和应用工作。主持多项国家、省市科技攻关项目。发表学术论文60 余篇,获得授权发明专利15项。
赵世贤,高级工程师,硕士研究生导师。2010年毕业于北京工业大学,获工学博士学位。现任职于中钢集团洛阳耐火材料研究院有限公司先进耐火材料国家重点实验室,主要从事先进耐火材料和结构陶瓷相关基础研究与产品开发。承担国家自然科学基金、国家重点研发计划、国家国际科技合作等项目10多项,在国内外重点学术期刊发表学术论文40余篇,申请和授权国家专利10余项。
引用本文:    
李凌锋, 赵世贤, 郭昂, 司瑶晨, 王战民, 王刚. 利用传统电炉低温烧结致密Si3N4陶瓷[J]. 材料导报, 2022, 36(4): 20090160-6.
LI Lingfeng, ZHAO Shixian, GUO Ang, SI Yaochen, WANG Zhanmin, WANG Gang. Dense Si3N4 Ceramics Sintered at Low Temperature in Traditional Electric Furnace. Materials Reports, 2022, 36(4): 20090160-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090160  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20090160
1 Zhang X H, Wen D D, Shi Z Y, et al. Ceramics International, 2020, 46(1), 795.
2 Krstic Z, Krstic V D. Journal of Materials Science, 2012, 47(2), 535.
3 Zhou Y, Hyuga H, Kusano D,et al. Journal of Asian Ceramic Societies, 2015, 3(3), 221.
4 Duan Y S,Zhang J X, Li X G,et al. International Journal of Applied Ceramic Technology, 2019, 16(4), 1399.
5 Zhu X W, Sakka Y, Zhou Y, et al. Journal of the European Ceramic Society, 2014, 34(10), 2585.
6 Riley F L. Journal of the American Ceramic Society, 2000, 83(2), 245.
7 Li Y S, Ha-Neul K, Wu H B, et al. Journal of the European Ceramic Society, 2020, 41( 1), 274.
8 Liu J,Zhu T B, Xie Z P, et al. International Journal of Applied Ceramic Technology, 2017, 14(5), 860.
9 Demir V. Materials and Design, 2006, 27(10), 1102.
10 Zhu X W. Science and Technology of Advanced Materials,2010,11(6),1.
11 Hu F,Zhu T B,Xie Z P,et al. Ceramics International, 2020, 46(8), 12606.
12 Yang C P, Liu Q, Zhang B,et al. Ceramics International, 2019, 45(10), 12757.
13 Dash A, Vassen R, Guillon O, et al. Nature Materials, 2019, 18(5), 465.
14 Plucknett K P, Lin H T. Journal of the American Ceramic Society, 2005, 88(12), 3538.
15 Jack K H. Journal of Materials Science, 1976, 11(6), 1135.
16 Greskovich C. Journal of the American Ceramic Society, 2010, 64(12), 725.
17 Wang N, Cai Y, Zhang R Q. Materials Science & Engineering R: Reports, 2008, 60(1-6), 1.
18 Li Y, Kim H N, Wu H, et al. Journal of the American Ceramic Society, 2018, 101(9), 4128.
19 Matovic B, Rixecker G, Aldinger F. Journal of the American Ceramic Society, 2004, 87(4), 546.
20 Wang W D, Yao D X, Chen H B, et al. Journal of the American Ceramic Society, 2020, 103(3), 2090.
21 Pezzotti, Wakasugi, Nishida, et al. Journal of Non-Crystalline Solids, 2000, 271(1-2), 1.
22 Meng Q Y, Zhao Z H, Sun Y Q, et al. Ceramics International, 2017, 43(13), 10123.
23 Li S, Xie Z P, Xue W J, et al. Journal of the American Ceramic Society, 2015, 98(3), 698.
24 Liu N, Zhang J, Duan Y, et al. Journal of the European Ceramic Society, 2019, 40(4), 1132.
25 Feng J J,Li G Q,Mou Z X,et al. China Surface Engineering, 2004(4), 15(in Chinese).
冯建基,李国卿,牟宗信,等. 中国表面工程, 2004(4), 15.
26 Du H, Houser C A, Tressler R E, et al. Journal of the Electrochemical Society, 1990, 137(2), 741.
27 Vaughn W L, Maahs H G. Journal of the American Ceramic Society, 1990, 73(6), 1540.
28 Qadir A, Fogarassy Z, Horváth Z E, et al. Ceramics International, 2018, 44(12), 14601.
29 Sharkawy S W, El-Aslabi A M.Corrosion Science, 1998, 40(10), 1119.
30 Herrmann M, Green D J. Journal of the American Ceramic Society, 2013, 96(10), 3009.
[1] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[2] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[3] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[4] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[5] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[6] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[7] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[8] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[9] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[10] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[11] 惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
[12] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[13] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[14] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[15] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed